5 research outputs found

    Comprehensive Identification of Meningococcal Genes and Small Noncoding RNAs Required for Host Cell Colonization

    No full text
    Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche. During bacteremia, N. meningitidis gains access to the blood compartment, where it adheres to endothelial cells of blood vessels and causes dramatic vascular damage. Colonization of the nasopharyngeal niche and communication with the different human cell types is a major issue of the N. meningitidis life cycle that is poorly understood. Here, highly saturated random transposon insertion libraries of N. meningitidis were engineered, and the fitness of mutations during routine growth and that of colonization of endothelial and epithelial cells in a flow device were assessed in a transposon insertion site sequencing (Tn-seq) analysis. This allowed the identification of genes essential for bacterial growth and genes specifically required for host cell colonization. In addition, after having identified the small noncoding RNAs (sRNAs) located in intergenic regions, the phenotypes associated with mutations in those sRNAs were defined. A total of 383 genes and 8 intergenic regions containing sRNA candidates were identified to be essential for growth, while 288 genes and 33 intergenic regions containing sRNA candidates were found to be specifically required for host cell colonization. IMPORTANCE: Meningococcal meningitis is a common cause of meningitis in infants and adults. Neisseria meningitidis (meningococcus) is also a commensal bacterium of the nasopharynx and is carried by 3 to 30% of healthy humans. Under some unknown circumstances, N. meningitidis is able to invade the bloodstream and cause either meningitis or a fatal septicemia known as purpura fulminans. The onset of symptoms is sudden, and death can follow within hours. Although many meningococcal virulence factors have been identified, the mechanisms that allow the bacterium to switch from the commensal to pathogen state remain unknown. Therefore, we used a Tn-seq strategy coupled to high-throughput DNA sequencing technologies to find genes for proteins used by N. meningitidis to specifically colonize epithelial cells and primary brain endothelial cells. We identified 383 genes and 8 intergenic regions containing sRNAs essential for growth and 288 genes and 33 intergenic regions containing sRNAs required specifically for host cell colonization

    European Guideline on IgG4-related digestive disease – UEG and SGF evidence-based recommendations

    No full text
    The overall objective of these guidelines is to provide evidence-based recommendations for the diagnosis and management of immunoglobulin G4 (IgG4)-related digestive disease in adults and children. IgG4-related digestive disease can be diagnosed only with a comprehensive work-up that includes histology, organ morphology at imaging, serology, search for other organ involvement, and response to glucocorticoid treatment. Indications for treatment are symptomatic patients with obstructive jaundice, abdominal pain, posterior pancreatic pain, and involvement of extra-pancreatic digestive organs, including IgG4-related cholangitis. Treatment with glucocorticoids should be weight-based and initiated at a dose of 0.6–0.8 mg/kg body weight/day orally (typical starting dose 30-40 mg/day prednisone equivalent) for 1 month to induce remission and then be tapered within two additional months. Response to initial treatment should be assessed at week 2–4 with clinical, biochemical and morphological markers. Maintenance treatment with glucocorticoids should be considered in multi-organ disease or history of relapse. If there is no change in disease activity and burden within 3 months, the diagnosis should be reconsidered. If the disease relapsed during the 3 months of treatment, immunosuppressive drugs should be added

    Next-generation ARIA care pathways for rhinitis and asthma: a model for multimorbid chronic diseases

    No full text
    Abstract Background In all societies, the burden and cost of allergic and chronic respiratory diseases are increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system into integrated care with organizational health literacy. Main body As an example for chronic disease care, MASK (Mobile Airways Sentinel NetworK), a new project of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative, and POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health), in collaboration with professional and patient organizations in the field of allergy and airway diseases, are proposing real-life ICPs centred around the patient with rhinitis, and using mHealth to monitor environmental exposure. Three aspects of care pathways are being developed: (i) Patient participation, health literacy and self-care through technology-assisted “patient activation”, (ii) Implementation of care pathways by pharmacists and (iii) Next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) obtained through mobile technology. The EU and global political agendas are of great importance in supporting the digital transformation of health and care, and MASK has been recognized by DG Santé as a Good Practice in the field of digitally-enabled, integrated, person-centred care. Conclusion In 20 years, ARIA has considerably evolved from the first multimorbidity guideline in respiratory diseases to the digital transformation of health and care with a strong political involvement

    Next-generation ARIA care pathways for rhinitis and asthma: a model for multimorbid chronic diseases

    No full text
    Abstract Background In all societies, the burden and cost of allergic and chronic respiratory diseases are increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system into integrated care with organizational health literacy. Main body As an example for chronic disease care, MASK (Mobile Airways Sentinel NetworK), a new project of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative, and POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health), in collaboration with professional and patient organizations in the field of allergy and airway diseases, are proposing real-life ICPs centred around the patient with rhinitis, and using mHealth to monitor environmental exposure. Three aspects of care pathways are being developed: (i) Patient participation, health literacy and self-care through technology-assisted “patient activation”, (ii) Implementation of care pathways by pharmacists and (iii) Next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) obtained through mobile technology. The EU and global political agendas are of great importance in supporting the digital transformation of health and care, and MASK has been recognized by DG Santé as a Good Practice in the field of digitally-enabled, integrated, person-centred care. Conclusion In 20 years, ARIA has considerably evolved from the first multimorbidity guideline in respiratory diseases to the digital transformation of health and care with a strong political involvement
    corecore