79 research outputs found

    The GRAAL high resolution BGO calorimeter and its energy calibration and monitoring system

    Get PDF
    We describe the electromagnetic calorimeter built for the GRAAL apparatus at the ESRF. Its monitoring system is presented in detail. Results from tests and the performance obtained during the first GRAAL experiments are given. The energy calibration accuracy and stability reached is a small fraction of the intrinsic detector resolution.Comment: 19 pages, 14 figures, submitted to Nuclear Instruments and Method

    Further studies on pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones as potent and selective human A1 adenosine receptor antagonists.

    Get PDF
    A new series of pyrazolo[1',5':1,6]pyrimido[4,5-dlpyridazin-4(3H)-ones was synthesized and tested in radioligand binding assays on human A(1), A(2A) and A(3) adenosine receptors. Most of the compounds showed high selectivity of action towards A(1) receptor and high affinity with K-i values in the low nanomolar range. The pharmacological profile of the most active molecules towards A(1) adenosine receptors was evaluated in cAMP functional assay. Compounds demonstrated their ability to completely counteract the effect of the agonist NECA, thus demonstrating their antagonist profile. Moreover, the most interesting compound, tested in the mouse passive avoidance, exhibited an antiamnesic effect at the doses of 10 and 30 mg/kg. (C) 2014 Published by Elsevier Masson SAS

    Exclusive Electroproduction of á”  Mesons at 4.2 GeV

    Get PDF
    We studied the exclusive reaction ep → e\u27 p\u27 á”  using the á”  →K+K- decay mode. The data were collected using a 4.2 GeV incident electron beam and the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. Our experiment covers the range in Q2 from 0.7 to 2.2 GeV2and W from 2.0 to 2.6 GeV. Taken together with all previous data, we find a consistent picture of á”  production on the proton. Our measurement shows the expected decrease of the t slope with the vector-meson formation time c Δ t below 2 fm. At c Δ t = 0.6 fm, we measure bÉž = 2.27 ± 0.42 GeV-2. The cross section dependence on W as W0.2 ±0.1 at Q2, 1.3 GeV2 was determined by comparison with Éž production at HERA after correcting for threshold effects. This is the same dependence as observed in photoproduction

    Corrected Article: Exclusive Electroproduction of á”  Mesons at 4.2 GeV [Physical. Rev. C 63, 065205, (2001)]

    Get PDF
    We studied the exclusive reaction ep → e\u27 p\u27 á”  using the á”  →K+K- decay mode. The data were collected using a 4.2 GeV incident electron beam and the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. Our experiment covers the range in Q2 from 0.7 to 2.2 GeV2and W from 2.0 to 2.6 GeV. Taken together with all previous data, we find a consistent picture of á”  production on the proton. Our measurement shows the expected decrease of the t slope with the vector-meson formation time c Δ t below 2 fm. At c Δ t = 0.6 fm, we measure bÉž = 2.27 ± 0.42 GeV-2. The cross section dependence on W as W0.2 ±0.1 at Q2, 1.3 GeV2 was determined by comparison with Éž production at HERA after correcting for threshold effects. This is the same dependence as observed in photoproduction

    ep → ep π⁰ Reaction Studied in the Δ(1232) Mass Region Using Polarization Asymmetries

    Get PDF
    Measurements of the angular distributions of target and double-spin asymmetries for the Δ+(1232) in the exclusive channel → p(→e,e\u27p)π0 obtained at the Jefferson Lab in the Q2 range from 0.5 to 1.5 GeV2/c2 are presented. Results of the asymmetries are compared with the unitary isobar model [D. Drechsel , Nucl. Phys. A645, 145 (1999)], dynamical models [T. Sato and T. S. Lee, Phys. Rev. C 54, 2660 (1996); S. S. Kamalov , Phys. Lett. B 27, 522 (2001)], and the effective Lagrangian theory [R. M. Davidson , Phys. Rev. D 43, 71 (1991)]. Sensitivity to the different models was observed, particularly in relation to the description of background terms on which the target asymmetry depends significantly

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Get PDF
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer [Q2 = 0.27-1.3 (GeV/c)2] and final hadronic state mass in the nucleon resonance region (W=1.08-2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15ND3) and detected the scattered electrons with the CEBAF large acceptance spectrometer. From our data, we extract the longitudinal double spin asymmetry A∄ and the spin structure function g1d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1d and study its approach to both the deep inelastic limit at large Q2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q2→ 0). We find that the first moment varies rapidly in the Q2 range of our experiment and crosses zero at Q2 between 0.5 and 0.8 (GeV/c)2, indicating the importance of the Delta resonance at these momentum transfers

    Kinematically Complete Measurement of the Proton Structure Function F₂ in the Resonance Region and Evaluation of its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W \u3c2.5 GeV) at momentum transfers Q2 below 4.5 (GeV/c)2 with the CLAS detector. The large acceptance of CLAS allowed the measurement of the cross section in a large, contiguous two-dimensional range of Q2 and x, making it possible to perform an integration of the data at fixed Q2 over the significant x interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q2 evolution of its moments, Mn(Q2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and will require significant improvements in theoretical predictions if a meaningful comparison with these new experimental results is to be made

    Measurement of ep → e \u27 p πâșπ⁻ and Baryon Resonance Analysis

    Get PDF
    The cross section for the reaction ep→ e\u27pπ+π- was measured in the resonance region for 1.4 2 \u3c 1.5 GeV2/c2using the CLAS detector at Jefferson Laboratory. The data show resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on N* and Δ states shows an evident discrepancy. A better description of the data is obtained either by a sizable change of the properties of the P13(1720) resonance or by introducing a new baryon state, not reported in published analyses

    Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly

    Get PDF
    Background Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. Results We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. Conclusions We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.Peer reviewe

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Full text link
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer (Q2Q^2 = 0.27 -- 1.3 (GeV/c)2^2) and final hadronic state mass in the nucleon resonance region (WW = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15^{15}ND3_3) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry A∣∣A_{||} and the spin structure function g1dg_1^d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1dg_1^d and study its approach to both the deep inelastic limit at large Q2Q^2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q2→0Q^2 \to 0). We find that the first moment varies rapidly in the Q2Q^2 range of our experiment and crosses zero at Q2Q^2 between 0.5 and 0.8 (GeV/c)2^2, indicating the importance of the Δ\Delta resonance at these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys. Rev.
    • 

    corecore