14,288 research outputs found
Robust stability of second-order systems
A feedback linearization technique is used in conjunction with passivity concepts to design robust controllers for space robots. It is assumed that bounded modeling uncertainties exist in the inertia matrix and the vector representing the coriolis, centripetal, and friction forces. Under these assumptions, the controller guarantees asymptotic tracking of the joint variables. A Lagrangian approach is used to develop a dynamic model for space robots. Closed-loop simulation results are illustrated for a simple case of a single link planar manipulator with freely floating base
Theory and computation of optimal low- and medium-thrust transfers
This report presents the formulation of the optimal low- and medium-thrust orbit transfer control problem and methods for numerical solution of the problem. The problem formulation is for final mass maximization and allows for second-harmonic oblateness, atmospheric drag, and three-dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup some examples to demonstrate the ability of two indirect methods to solve the resulting TPBVP's. The methods demonstrated are the multiple-point shooting method as formulated in H. J. Oberle's subroutine BOUNDSCO, and the minimizing boundary-condition method (MBCM). We find that although both methods can converge solutions, there are trade-offs to using either method. BOUNDSCO has very poor convergence for guesses that do not exhibit the correct switching structure. MBCM, however, converges for a wider range of guesses. However, BOUNDSCO's multi-point structure allows more freedom in quesses by increasing the node points as opposed to only quessing the initial state in MBCM. Finally, we note an additional drawback for BOUNDSCO: the routine does not supply information to the users routines for switching function polarity but only the location of a preset number of switching points
High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers
This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB
Deutsch-Jozsa algorithm as a test of quantum computation
A redundancy in the existing Deutsch-Jozsa quantum algorithm is removed and a
refined algorithm, which reduces the size of the register and simplifies the
function evaluation, is proposed. The refined version allows a simpler analysis
of the use of entanglement between the qubits in the algorithm and provides
criteria for deciding when the Deutsch-Jozsa algorithm constitutes a meaningful
test of quantum computation.Comment: 10 pages, 2 figures, RevTex, Approved for publication in Phys Rev
Prediction of the number of cloud droplets in the ECHAM GCM
In this paper a prognostic equation for the number of cloud droplets (CDNC) is introduced into the ECHAM general circulation model. The initial CDNC is based on the mechanistic model of Chuang and Penner [1995], providing a more realistical prediction of CDNC than the empirical method previously used. Cloud droplet nucleation is parameterized as a function of total aerosol number concentration, updraft velocity, and a shape parameter, which takes the aerosol composition and size distribution into account. The total number of aerosol particles is obtained as the sum of marine sulfate aerosols produced from dimethyl sulfide, hydrophylic organic and black carbon, submicron dust, and sea-salt aerosols. Anthropogenic sulfate aerosols only add mass to the preexisting aerosols but do not form new particles. The simulated annual mean liquid water path, column CDNC, and effective radius agree well with observations, as does the frequency distributions of column CDNC for clouds over oceans and the variations of cloud optical depth with effective radius
A 0.8 V T Network-Based 2.6 GHz Downconverter RFIC
A 2.6 GHz downconverter RFIC is designed and implemented using a 0.18 μm CMOS standard process. An important goal of the design is to achieve the high linearity that is required in WiMAX systems with a low supply voltage. A passive T phase-shift network is used as an RF input stage in a Gilbert cell to reduce supply voltage. A single supply voltage of 0.8 V is used with a power consumption of 5.87 mW. The T network-based downconverter achieves a conversion gain (CG) of 5 dB, a single-sideband noise figure (NF) of 16.16 dB, an RF-to-IF isolation of greater than 20 dB, and an input-referred third-order intercept point (IIP3) of 1 dBm when the LO power of -13 dBm is applied
Model reconstructions for the Si(337) orientation
Although unstable, the Si(337) orientation has been known to appear in
diverse experimental situations such as the nanoscale faceting of Si(112), or
in the case of miscutting a Si(113) surface. Various models for Si(337) have
been proposed over time, which motivates a comprehensive study of the structure
of this orientation. Such a study is undertaken in this article, where we
report the results of a genetic algorithm optimization of the Si(337)- surface. The algorithm is coupled with a highly optimized empirical
potential for silicon, which is used as an efficient way to build a set of
possible Si(337) models; these structures are subsequently relaxed at the level
of ab initio density functional methods. Using this procedure, we retrieve most
of the (337) reconstructions proposed in previous works, as well as a number of
novel ones.Comment: 5 figures (low res.); to appear in J. Appl. Phy
Fast Quantum Search Algorithms in Protein Sequence Comparison - Quantum Biocomputing
Quantum search algorithms are considered in the context of protein sequence
comparison in biocomputing. Given a sample protein sequence of length m (i.e m
residues), the problem considered is to find an optimal match in a large
database containing N residues. Initially, Grover's quantum search algorithm is
applied to a simple illustrative case - namely where the database forms a
complete set of states over the 2^m basis states of a m qubit register, and
thus is known to contain the exact sequence of interest. This example
demonstrates explicitly the typical O(sqrt{N}) speedup on the classical O(N)
requirements. An algorithm is then presented for the (more realistic) case
where the database may contain repeat sequences, and may not necessarily
contain an exact match to the sample sequence. In terms of minimizing the
Hamming distance between the sample sequence and the database subsequences the
algorithm finds an optimal alignment, in O(sqrt{N}) steps, by employing an
extension of Grover's algorithm, due to Boyer, Brassard, Hoyer and Tapp for the
case when the number of matches is not a priori known.Comment: LaTeX, 5 page
Statistical analysis of the 70 meter antenna surface distortions
Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon
- …