840 research outputs found

    Constrain intergalactic medium from the SZ effect map

    Full text link
    In this paper, we try to detect the SZ effect in the 2MASS DWT clusters and less bound objects in order to constrain the warm-hot intergalactic medium distribution on large scales by cross-correlation analysis. The results of both observed WMAP and mock SZ effect map indicate that the hot gas distributes from inside as well as outside of the high density regions of galaxy clusters, which is consistent with the results of both observation and hydro simulation. Therefore, the DWT measurement of the cross-correlation would be a powerful tool to probe the missing of baryons in the Universe.Comment: 9 pages,2 figures. Accepted for publication in Mod. Phys. Lett.

    Spatial Locality of Galaxy Correlation Function in Phase Space: Samples from the 2MASS Extended Source Catalog

    Full text link
    We analyze the statistical properties and dynamical implications of galaxy distributions in phase space for samples selected from the 2MASS Extended Source Catalog. The galaxy distribution is decomposed into modes δ(k,x)\delta({\bf k, x}) which describe the number density perturbations of galaxies in phase space cell given by scale band k\bf k to k+Δk{\bf k}+\Delta {\bf k} and spatial range x\bf x to x+Δx{\bf x}+\Delta {\bf x}. In the nonlinear regime, δ(k,x)\delta({\bf k, x}) is highly non-Gaussian. We find, however, that the correlations between δ(k,x)\delta({\bf k, x}) and δ(k′,x′)\delta({\bf k', x'}) are always very weak if the spatial ranges (x{\bf x}, x+Δx{\bf x}+\Delta {\bf x}) and (x′{\bf x'}, x′+Δx′{\bf x'}+\Delta {\bf x'}) don't overlap. This feature is due to the fact that the spatial locality of the initial perturbations is memorized during hierarchical clustering. The highly spatial locality of the 2MASS galaxy correlations is a strong evidence for the initial perturbations of the cosmic mass field being spatially localized, and therefore, consistent with a Gaussian initial perturbations on scales as small as about 0.1 h−1^{-1} Mpc. Moreover, the 2MASS galaxy spatial locality indicates that the relationship between density perturbations of galaxies and the underlying dark matter should be localized in phase space. That is, for a structure consisting of perturbations on scales from kk to k+Δk k+\Delta {k}, the nonlocal range in the relation between galaxies and dark matter should {\it not} be larger than ∣Δx∣=2π/∣Δk∣|{\Delta {\bf x}}|=2\pi/|\Delta {\bf k}|. The stochasticity and nonlocality of the bias relation between galaxies and dark matter fields should be no more than the allowed range given by the uncertainty relation ∣Δx∣∣Δk∣=2π|{\Delta {\bf x}|| \Delta{\bf k}}|=2\pi.Comment: 27 pages, 9 figures, accepted by Ap

    Log-Poisson Hierarchical Clustering of Cosmic Neutral Hydrogen and Ly-alpha Transmitted Flux of QSO Absorption Spectrum

    Full text link
    we study, in this paper, the non-Gaussian features of the mass density field of neutral hydrogen fluid and the Ly-alpha transmitted flux of QSO absorption spectrum from the point-of-view of self-similar log-Poisson hierarchy. It has been shown recently that, in the scale range from the onset of nonlinear evolution to dissipation, the velocity and mass density fields of cosmic baryon fluid are extremely well described by the She-Leveque's scaling formula, which is due to the log-Poisson hierarchical cascade. Since the mass density ratio between ionized hydrogen to total hydrogen is not uniform in space, the mass density field of neutral hydrogen component is not given by a similar mapping of total baryon fluid. Nevertheless, we show, with hydrodynamic simulation samples of the concordance Λ\LambdaCDM universe, that the mass density field of neutral hydrogen, is also well described by the log-Poisson hierarchy. We then investigate the field of Lyα\alpha transmitted flux of QSO absorption spectrum. Due to redshift distortion, Lyα\alpha transmitted flux fluctuations are no longer to show all features of the log-Poisson hierarchy. However, some non-Gaussian features predicted by the log-Poisson hierarchy are not affected by the redshift distortion. We test these predictions with the high resolution and high S/N data of quasars Lyα\alpha absorption spectra. All results given by real data, including β\beta-hierarchy, high order moments and scale-scale correlation, are found to be well consistent with the log-Poisson hierarchy. We compare the log-Poisson hierarchy with the popular log-normal model of the Lyα\alpha transmitted flux. The later is found to yield too strong non-Gaussianity at high orders, while the log-Poisson hierarchy is in agreement with observed data.Comment: 24 pages, 9 figures, accepted by Ap

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    FACT, the Bur Kinase Pathway, and the Histone Co-Repressor HirC Have Overlapping Nucleosome-Related Roles in Yeast Transcription Elongation

    Get PDF
    Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome

    Understanding Novel Superconductors with Ab Initio Calculations

    Full text link
    This chapter gives an overview of the progress in the field of computational superconductivity. Following the MgB2 discovery (2001), there has been an impressive acceleration in the development of methods based on Density Functional Theory to compute the critical temperature and other physical properties of actual superconductors from first-principles. State-of-the-art ab-initio methods have reached predictive accuracy for conventional (phonon-mediated) superconductors, and substantial progress is being made also for unconventional superconductors. The aim of this chapter is to give an overview of the existing computational methods for superconductivity, and present selected examples of material discoveries that exemplify the main advancements.Comment: 38 pages, 10 figures, Contribution to Springer Handbook of Materials Modellin
    • …
    corecore