608 research outputs found
Infrared Dark Cloud Cores in the SCUBA Legacy Catalogue
We present an investigation of candidate Infrared Dark Cloud cores as
identified by Simon et al. (2006) located within the SCUBA Legacy Catalogue.
After applying a uniform noise cut to the Catalogue data we identify 154
Infrared Dark Cloud cores that were detected at 850um and 51 cores that were
not. We derive column densities for each core from their 8um extinction and
find that the IRDCs detected at 850um have higher column densities (a mean of
1.7x10^22 cm-2) compared to those cores not detected at 850um (a mean of
1.0x10^22 cm-2). Combined with sensitivity estimates, we suggest that the cores
not detected at 850um are low mass, low column density and low temperature
cores that are below the sensitivity limit of SCUBA at 850um. For a subsample
of the cores detected at 850um those contained within the MIPSGAL area) we find
that two thirds are associated with 24um sources. Cores not associated with
24um emission are either ``starless'' IRDC cores that perhaps have yet to form
stars, or contain low mass YSOs below the MIPSGAL detection limit. We see that
those ``starless'' IRDC cores and the IRDC cores associated with 24um emission
are drawn from the same column density population and are of similar mass. If
we then assume the cores without 24um embedded sources are at an earlier
evolutionary stage to cores with embedded objects we derive a statistical
lifetime for the quiescent phase of a few 10^3-10^4 years. Finally, we make
conservative predictions for the number of observed IRDCs that will be observed
by the Apex Telescope Galactic Plane Survey (ATLASGAL), the Herschel Infrared
Galactic Plane Survey (Hi-GAL), the JCMT Galactic Plane Survey (JPS) and the
SCUBA-2 ``All Sky'' Survey (SASSy).Comment: 18 pages, 3 tables, 10 figure
Searching for jet rotation in Class 0/I sources observed with GEMINI/GNIRS.
Original article can be found at: http://www.aanda.org/
Copyright The European Southern ObservatoryContext: In recent years, there has been a number of detections of gradients in the radial velocity profile across jets from young stars. The significance of these results is considerable. They may be interpreted as a signature of jet rotation about its symmetry axis, thereby representing the only existing observational indications supporting the theory that jets extract angular momentum from star-disk systems. However, the possibility that we are indeed observing jet rotation in pre-main sequence systems is undergoing active debate.
Aims: To test the validity of a rotation argument, we must extend the survey to a larger sample, including younger sources.
Methods: We present the latest results of a radial velocity analysis on jets from Class 0 and I sources, using high resolution data from the infrared spectrograph GNIRS on GEMINI South. We obtained infrared spectra of protostellar jets HH 34, HH 111-H, HH 212 NK1 and SK1.
Results: The [Fe II] emission was unresolved in all cases and so Doppler shifts across the jet width could not be accessed. The H2 emission was resolved in all cases except HH 34. Doppler profiles across the molecular emission were obtained, and gradients in radial velocity of typically 3 km s-1 identified.
Conclusions: Agreement with previous studies implies they may be interpreted as jet rotation, leading to toroidal velocity and angular momentum flux estimates of 1.5 km s-1 and 1 × 10-5 yr-1 AU km s-1 respectively. However, caution is needed. For example, emission is asymmetric across the jets from HH 212 suggesting a more complex interpretation is warranted. Furthermore, observations for HH 212 and HH 111-H are conducted far from the source implying external influences are more likely to confuse the intrinsic flow kinematics. These observations demonstrate the difficulty of conducting this study from the ground, and highlight the necessity for high angular resolution via adaptive optics or space-based facilities
Near-Infrared Imaging Polarimetry of Young Stellar Objects in rho-Ophiuchi
The results of a near-infrared (J H K LP) imaging linear polarimetry survey
of 20 young stellar objects (YSOs) in rho Ophiuchi are presented. The majority
of the sources are unresolved, with K-band polarizations, P_K < 6 per cent.
Several objects are associated with extended reflection nebulae. These objects
have centrosymmetric vector patterns with polarization discs over their cores;
maximum polarizations of P_K > 20 per cent are seen over their envelopes.
Correlations are observed between the degree of core polarization and the
evolutionary status inferred from the spectral energy distribution. K-band core
polarizations >6 per cent are only observed in Class I YSOs. A 3D Monte Carlo
model with oblate grains aligned with a magnetic field is used to investigate
the flux distributions and polarization structures of three of the rho Oph YSOs
with extended nebulae. A rho proportional to r^(-1.5) power law for the density
is applied throughout the envelopes. The large-scale centrosymmetric
polarization structures are due to scattering. However, the polarization
structure in the bright core of the nebula appears to require dichroic
extinction by aligned non-spherical dust grains. The position angle indicates a
toroidal magnetic field in the inner part of the envelope. Since the measured
polarizations attributed to dichroic extinction are usually <10 per cent, the
grains must either be nearly spherical or very weakly aligned. The higher
polarizations observed in the outer parts of the reflection nebulae require
that the dust grains responsible for scattering have maximum grain sizes <=1.05
microns.Comment: 26 pages. Accepted by MNRAS. Available as online early versio
The Ratio of Ortho- to Para-H2 in Photodissociation Regions
We discuss the ratio of ortho- to para-H2 in photodissociation regions
(PDRs). We draw attention to an apparent confusion in the literature between
the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited
states, and the H2 ortho-to-para abundance ratio. These ratios are not the same
because the process of FUV-pumping of fluorescent H2 emission in PDRs occurs
via optically thick absorption lines. Thus, gas with an equilibrium ratio of
ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited
ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are
preferentially reduced by optical depth effects. Indeed, if the ortho and para
pumping lines are on the ``square root'' part of the curve-of-growth, then the
expected ratio of ortho and para vibrational line strengths is the square root
of 3, ~ 1.7, close to the typically observed value. Thus, contrary to what has
sometimes been stated in the literature, most previous measurements of the
ratio of ortho- to para-H2 in vibrationally excited states are entirely
consistent with a total ortho-to-para ratio of 3, the equilibrium value for
temperatures greater than 200 K. We present an analysis and several detailed
models which illustrate the relationship between the total ratios of ortho- to
para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent
Infrared Space Observatory (ISO) measurements of pure rotational and
vibrational H2 emissions from the PDR in the star-forming region S140 provide
strong observational support for our conclusions.Comment: 23 pages (including 5 figures), LaTeX, uses aaspp4.sty, accepted for
publication in Ap
Wide-Field Infrared Imaging Polarimetry of the NGC 6334 Region: A Nest of Infrared Reflection Nebulae
We report the detection of eighteen infrared reflection nebulae (IRNe) in the
, , & linear polarimetric observations of the NGC 6334 massive
star-formation complex, of which 16 IRNe are new discoveries. Our images cover
180 square arcminutes, one of the widest near-infrared polarization data
in star-formation regions so far. These IRNe are most likely associated with
embedded young OB stars at different evolutionary phases, showing a variety of
sizes, morphologies, and polarization properties, which can be divided into
four categories. We argue the different nebula characteristics to be a possible
evolutionary sequence of circumstellar structures around young massive stars.Comment: 4 pages, 1 figur
A geophysical survey in the archaeological site of Archontiko, Yannitsa
The ancient settlement of Archontiko is 4.5 km NW of ancient Pella in North Greece (Figure 1). The findings showed that the area was first occupied by the end of the Iron Age, i.e. 650-550 B.C. Also, showed that the topographic table of Archontiko was a major settlement of the Yannitsa province due to its concessive position by the main roads of Macedonia (Chrysostomou A. and Chrysostomou P., 1993). At the upper layers of the ruins, findings of the Roman and Byzantine times were also unearthed. The geophysical methods have been used in order to detect and map antiquities in various sites in Greece (e.g., Tsokas et al., 1994; 1995; Sawaidis et al., 1999). The resistivity mapping employing the twin probe array, the total magnetic field variations, the airborne photos and the Ground Probing Radar are the most popular methods in this respect. However, almost all geophysical methods can be used to tackle specific problems. From 1992 till 1994, many geophysical surveys were carried out in the area of Archontiko to collect mainly magnetic data. Resistivity measurements were also conducted in a small part of the area. The data presented in this study cover the northern side of the topographic table of Archontiko and they were collected during two campaigns during the summer of the years 1992 and 1993 (Figure 2)
- …