264 research outputs found

    Geometric invariance of mass-like asymptotic invariants

    Full text link
    We study coordinate-invariance of some asymptotic invariants such as the ADM mass or the Chru\'sciel-Herzlich momentum, given by an integral over a "boundary at infinity". When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to have a vanishing integral at infinity; but they may be gathered in a divergence, thus having vanishing integral over any closed hypersurface. This fact could only be checked after direct calculation (and was called a "curious cancellation"). We give a conceptual explanation thereof.Comment: 13 page

    Rigid upper bounds for the angular momentum and centre of mass of non-singular asymptotically anti-de Sitter space-times

    Full text link
    We prove upper bounds on angular momentum and centre of mass in terms of the Hamiltonian mass and cosmological constant for non-singular asymptotically anti-de Sitter initial data sets satisfying the dominant energy condition. We work in all space-dimensions larger than or equal to three, and allow a large class of asymptotic backgrounds, with spherical and non-spherical conformal infinities; in the latter case, a spin-structure compatibility condition is imposed. We give a large class of non-trivial examples saturating the inequality. We analyse exhaustively the borderline case in space-time dimension four: for spherical cross-sections of Scri, equality together with completeness occurs only in anti-de Sitter space-time. On the other hand, in the toroidal case, regular non-trivial initial data sets saturating the bound exist.Comment: improvements in the presentation; some statements correcte

    On non-existence of static vacuum black holes with degenerate components of the event horizon

    Full text link
    We present a simple proof of the non-existence of degenerate components of the event horizon in static, vacuum, regular, four-dimensional black hole spacetimes. We discuss the generalisation to higher dimensions and the inclusion of a cosmological constant.Comment: latex2e, 9 pages in A

    Conditions for nonexistence of static or stationary, Einstein-Maxwell, non-inheriting black-holes

    Full text link
    We consider asymptotically-flat, static and stationary solutions of the Einstein equations representing Einstein-Maxwell space-times in which the Maxwell field is not constant along the Killing vector defining stationarity, so that the symmetry of the space-time is not inherited by the electromagnetic field. We find that static degenerate black hole solutions are not possible and, subject to stronger assumptions, nor are static, non-degenerate or stationary black holes. We describe the possibilities if the stronger assumptions are relaxed.Comment: 19 pages, to appear in GER

    Topological censorship for Kaluza-Klein space-times

    Full text link
    The standard topological censorship theorems require asymptotic hypotheses which are too restrictive for several situations of interest. In this paper we prove a version of topological censorship under significantly weaker conditions, compatible e.g. with solutions with Kaluza-Klein asymptotic behavior. In particular we prove simple connectedness of the quotient of the domain of outer communications by the group of symmetries for models which are asymptotically flat, or asymptotically anti-de Sitter, in a Kaluza-Klein sense. This allows one, e.g., to define the twist potentials needed for the reduction of the field equations in uniqueness theorems. Finally, the methods used to prove the above are used to show that weakly trapped compact surfaces cannot be seen from Scri.Comment: minor correction

    On smoothness-asymmetric null infinities

    Get PDF
    We discuss the existence of asymptotically Euclidean initial data sets to the vacuum Einstein field equations which would give rise (modulo an existence result for the evolution equations near spatial infinity) to developments with a past and a future null infinity of different smoothness. For simplicity, the analysis is restricted to the class of conformally flat, axially symmetric initial data sets. It is shown how the free parameters in the second fundamental form of the data can be used to satisfy certain obstructions to the smoothness of null infinity. The resulting initial data sets could be interpreted as those of some sort of (non-linearly) distorted Schwarzschild black hole. Its developments would be so that they admit a peeling future null infinity, but at the same time have a polyhomogeneous (non-peeling) past null infinity.Comment: 13 pages, 1 figur

    Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem

    Get PDF
    We study Killing vector fields in asymptotically flat space-times. We prove the following result, implicitly assumed in the uniqueness theory of stationary black holes. If the conditions of the rigidity part of the positive energy theorem are met, then in such space-times there are no asymptotically null Killing vector fields except if the initial data set can be embedded in Minkowski space-time. We also give a proof of the non-existence of non-singular (in an appropriate sense) asymptotically flat space-times which satisfy an energy condition and which have a null ADM four-momentum, under conditions weaker than previously considered.Comment: 30 page

    Uniqueness of the mass in the radiating regime

    Get PDF
    The usual approaches to the definition of energy give an ambiguous result for the energy of fields in the radiating regime. We show that for a massless scalar field in Minkowski space-time the definition may be rendered unambiguous by adding the requirement that the energy cannot increase in retarded time. We present a similar theorem for the gravitational field, proved elsewhere, which establishes that the Trautman-Bondi energy is the unique (up to a multiplicative factor) functional, within a natural class, which is monotonic in time for all solutions of the vacuum Einstein equations admitting a smooth ``piece'' of conformal null infinity Scri.Comment: 8 pages, revte

    Towards the classification of static vacuum spacetimes with negative cosmological constant

    Get PDF
    We present a systematic study of static solutions of the vacuum Einstein equations with negative cosmological constant which asymptotically approach the generalized Kottler (``Schwarzschild--anti-de Sitter'') solution, within (mainly) a conformal framework. We show connectedness of conformal infinity for appropriately regular such space-times. We give an explicit expression for the Hamiltonian mass of the (not necessarily static) metrics within the class considered; in the static case we show that they have a finite and well defined Hawking mass. We prove inequalities relating the mass and the horizon area of the (static) metrics considered to those of appropriate reference generalized Kottler metrics. Those inequalities yield an inequality which is opposite to the conjectured generalized Penrose inequality. They can thus be used to prove a uniqueness theorem for the generalized Kottler black holes if the generalized Penrose inequality can be established.Comment: the discussion of our results includes now some solutions of Horowitz and Myers; typos corrected here and there; a shortened version of this version will appear in Journal of Mathematical Physic
    • …
    corecore