41 research outputs found
Peningkatan Aktivitas Belajar Mahasiswa melalui Lesson Study pada Mata Kuliah Anatomi dan Morfologi Tumbuhan
Tujuan yang ingin dicapai pada kegiatan lesson study ini adalah untuk meningkatkan aktivitas belajar mahasiswa di Program Studi Pendidikan Biologi pada mata kuliah Anatomi dan Morfologi Tumbuhan. Hasil akhir yang diharapkan adalah semua kompetensi dasar dan standar kompetensi bisa dicapai. Aktivitas belajar yang diharapkan meningkat terutama adalah (1) kemampuan berpikir kritis, (2) kemampuan berkomunikasi lisan, (3) kemampuan bekerja sama dalam tim, (4) kedisiplinan. Lesson Study dilakukan dengan menerapkan problem solving dalam perkuliahan dan dilakukan dalam 4 kali siklus yang masing-masing terdiri dari kegiatan Plan, Do dan See. Plan dilakukan oleh dosen model dan observer untuk menganalisis kebutuhan dan permasalahan yang dihadapi dalam perkuliahan dan mempersiapkan semua instrumen dan perangkat kuliah yang diyakini mampu membelajarkan mahasiswa secara efektif serta membangkitkan partisipasi aktif mahasiswa dalam pembelajaran. Produk dalam kegiatan plan adalah jadwal pelaksanaan plan, do dan see, RPP, materi, media, dan alat evaluasi. Kegiatan selanjutnya adalah kegiatan open class, yaitu kegiatan tatap muka di kelas yang diampu oleh dosen model dan dimonitor keterlaksanaannya oleh para observer. Setelah itu dosen model dan para observer melakukan refleksi berdasarkan open class yang baru saja dilakukan, mendiskusikan masalah dan cara penanggulangannya agar siklus selanjutnya lebih baik pencapaiannya. Berdasarkan hasil pelaksanaan lesson study selama 4 siklus didapatkan bahwa penggunaan model problem solving melalui lesson study pada pembelajaran Anatomi dan Morfologi Tumbuhan dapat meningkatkan aktivitas belajar mahasiswa pada setiap tahapan siklus, yang ditunjukkan dengan meningkatnya (1) kemampuan berpikir kritis, (2) kemampuan berkomunikasi lisan, (3) kemampuan bekerja sama dalam tim, dan (4) kedisiplinan. Selain itu juga terdapat peningkatan kualitas pembelajaran yang dilakukan oleh dosen, baik dalam persiapan pembelajaran maupun keterampilan melaksanakan pembelajaran. Walaupun demikian, lesson study ini masih perlu dilanjutkan dan ditingkatkan agar pembelajaran yang berkualitas tetap terjaga
Model Sistem Multi Agen Linear Dengan Formasi Segitiga
In this paper, a linear model of multi agent movement in equilateral triangle formation is considered. The agents have initial and final state in triangular formation. Along the motion, all agents can not move far away and collide. The agents are steered from initial position to final position in fixed time. For this goal, optimal control with Pontryagin Maximum Principle is applied and the classic difficulty in the optimal control problem is appear. To solve the classic difficulty above, the steepest descent method is used
Mutation of LUSH<sup>D118</sup> does not affect the responses of OR67d neurons to cVA.
<p>(A) Representative traces of extracellular electrophysiological recordings of OR67d neurons in LUSH<sup>wt</sup> and LUSH<sup>D118A</sup> flies stimulated with 10% cVA. The grey bar indicates the stimulus time (1 s). (B) Dose-response curves of OR67d neurons to cVA in the genotypes in (A). Mean responses are plotted (±SEM; <i>n</i> = 15–16 sensilla; ≤3 sensilla per animal). The trace and quantified data for LUSH<sup>wt</sup> are the same as in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio-1001546-g003" target="_blank">Figure 3</a>. There are no statistically significant differences in cVA sensitivity due to genotype (ANOVA, <i>p</i> = 0.1183). There is a small but significant decrease in cVA-sensitivity at 100% cVA stimulation for LUSH<sup>D118A</sup> when compared to LUSH<sup>wt</sup> (<i>p</i><0.05; Tukey's multiple comparison tests). (C) Peristimulus time histograms of cVA-evoked responses in OR67d neurons in LUSH<sup>wt</sup> and LUSH<sup>D118A</sup> flies. There are no statistically significant differences in neuronal responses due to genotype (ANOVA, <i>p</i> = 0.3553). There is a small but significant decrease in cVA sensitivity in LUSH<sup>D118A</sup> compared to LUSH<sup>wt</sup> flies only in the 3.5–4-s time bin (<i>p</i><0.05; Sidak's post hoc multiple comparison tests).</p
Requirement for LUSH can be bypassed by high concentrations of cVA.
<p>(A) Representative traces of extracellular electrophysiological recordings of OR67d neurons in flies in a close-range stimulation assay for wild-type, <i>lush</i><sup>−/−</sup>, <i>Or67d</i><sup>−/−</sup> (<i>Or67d<sup>GAL4</sup>/Or67d<sup>GAL4</sup>)</i>, and <i>snmp</i><sup>−/−</sup> (<i>snmp<sup>1</sup>/snmp<sup>1</sup></i>) flies. During the 23 s recordings shown, a strip of filter paper spotted with paraffin oil (left traces) or 10% cVA (right traces) was moved, using a manual micromanipulator, within ∼0.1 mm of the antenna twice for ∼1 s, separated by a ∼4–5 s interval. The grey arrows indicate the approximate time of close approach of the cVA stimulus in wild-type and <i>lush</i><sup>−/−</sup> mutant sensilla. In other genotypes cVA did not evoke a response, and paraffin oil did not evoke a response in any genotype, so the precise timing of stimulation could not be determined from these traces. Additional examples of traces are provided in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio.1001546.s003" target="_blank">Figure S3</a>. (B) Representative traces of extracellular electrophysiological recordings of non-OR67d neurons in a wild-type fly stimulated with paraffin oil (left traces) or 10% cVA (right traces) in a close-range approach assay as in (A).</p
A transgenic system for structure-function analysis of LUSH.
<p>(A) Schematic representation of the <i>lush</i> genomic rescue construct. Coding exons are colored green and 5′- and 3′-UTRs in grey; introns and flanking genomic DNA are represented by a black line. Each transgene was inserted at the same genomic location in the attp40 landing site using the phiC31-based integration system. (B) Top: representative Western blots of antennal protein extracts from the indicated genotypes, probed with an anti-LUSH antibody (upper panel) or a control anti-IR8a antibody (lower panel). Genotypes (in this and all following figures): wild-type flies are <i>w<sup>1118</sup></i>. <i>lush</i><sup>−/−</sup> null mutant flies are <i>lush<sup>1</sup>/lush<sup>1</sup></i>. Transgenic LUSH flies are <i>LUSH<sup>x</sup>/LUSH<sup>x</sup>;lush<sup>1</sup>/lush<sup>1</sup></i>, where “<i>LUSH<sup>x</sup></i>” refers to the indicated LUSH transgene. Bottom: relative quantification of LUSH expression in the indicated genotypes. The levels of IR8a were used as a protein loading control. The mean of the optical density (OD) arbitrary units (red bar) ± SD of four independent extracts for each genotype are shown. Statistical analysis (ANOVA and Dunnett's multiple comparison tests using the wild-type mean as control) showed a significant difference in LUSH expression between wild-type and <i>lush</i><sup>−/−</sup> genotypes (**<i>p</i><0.01) but no significant differences with the extracts from flies expressing the different LUSH transgenes. (C) Immunofluorescence with anti-LUSH (green) and anti-ORCO (magenta) antibodies on antennal cryosections of wild-type, <i>lush</i><sup>−/−</sup> mutant, and transgenic LUSH animals. The scale bar represents 20 µm. A higher magnification detail of one optical section of the wild-type antennal section shows two ORCO-positive neurons flanked by LUSH-positive auxiliary cells. Similar restriction of LUSH expression to auxiliary cells was observed in all genotypes; overlap of green and magenta signals is due to auxiliary cells overlaying neurons in a different optical section.</p
Pheromone-dependent conformational changes in LUSH.
<p>(A) Schematic of a pheromone-sensing trichoid sensillum illustrating the major ultrastructural features and proteins involved in detection of cVA. The OSN bears a single sensory cilium where the heteromeric pheromone receptor OR67d/ORCO and the CD36-related SNMP are localized. Auxiliary cells secrete at least three OBPs, including LUSH, and ODEs, including the carboxylesterase Est-6 <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio.1001546-Chertemps1" target="_blank">[49]</a>, into the lymph that bathes the OSN cilium within the sensillar hair lumen. (B) cVA-dependent conformational changes in LUSH. Ribbon view of the superimposed backbones of apo LUSH (grey) and cVA/LUSH (green, monomer A, conformation A only is represented; see also <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio.1001546.s002" target="_blank">Figure S2</a>) (PDB IDs 1T14 <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio.1001546-Thode1" target="_blank">[27]</a> and 2GTE <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio.1001546-Laughlin1" target="_blank">[29]</a>, respectively). The ligand, cVA, is depicted in stick form (yellow, carbon atoms; red, oxygen atoms). The most prominent conformational differences between the structures are within the C-terminal tail (Ct). (C) Close-up of the regions of LUSH corresponding to residues 83–87 and 115–123 for the structures shown in (B). The side chains of K87, D118, and F121 are represented by sticks. In apo LUSH (grey)—but not in this conformation of cVA/LUSH (green)—K87 and D118 can form a salt bridge (dotted line) (see also <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio-1001546-t001" target="_blank">Table 1</a> and <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio.1001546.s002" target="_blank">Figure S2</a>).</p
Mutations in LUSH<sup>F121</sup> do not affect the sensitivity of OR67d neurons to cVA.
<p>(A) Representative traces of extracellular electrophysiological recordings of OR67d neurons in flies stimulated with 10% cVA in <i>lush</i><sup>−/−</sup>, LUSH<sup>wt</sup>, LUSH<sup>F121A</sup>, and LUSH<sup>F121W</sup> flies (see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001546#pbio-1001546-g002" target="_blank">Figure 2</a> legend for details of genotypes). The grey bar indicates the stimulus time (1 s). (B) Dose-response curves of OR67d neurons to cVA in the genotypes in (A). Mean responses are plotted (±SEM; <i>n</i> = 12–16 sensilla; ≤3 sensilla per animal). Curves were fitted using a log versus response-variable slope model with Prism-GraphPad software. There are no statistically significant differences in cVA sensitivity due to genotype between all the transgenic lines tested (ANOVA, <i>p = </i>0.1183). There is a slightly significant decrease in cVA-sensitivity at 100% cVA stimulation for LUSH<sup>F121W</sup> when compared to LUSH<sup>wt</sup> (<i>p</i><0.05, Tukey's multiple comparison tests).</p
Summary of data collection, phasing and refinement statistics.
a<p>Values in parentheses are for the highest resolution shell.</p>b<p> is the multiplicity (N) independent R.</p>c<p>Mean correlation factor between two random subsets of anomalous intensity differences. In parenthesis, resolution at which anomalous correlation drops below 35%.</p>d<p>Value in parenthesis: resolution for which phasing power drops below 1.0.</p>e<p>In parenthesis, number of reflections randomly assigned to the test set.</p>f<p>. R is defined as R for the test set.</p>g<p>The value in parentheses corresponds to the test set reflections.</p>h<p>Root mean square deviation from the standard values.</p>i<p>As reported by the Molprobity server <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0045847#pone.0045847-Davis1" target="_blank">[57]</a>. In parenthesis, the percentile of this value among structures of comparable resolution.</p
The α-helix located between residues 104 and 130 of TssB1 is required for T6SS function and interaction with TssC1.
<p>(A) Hcp release assay. Hcp<sub>FLAG</sub> release was assessed by separating whole cells (C) and culture supernatant (SN) fractions from 2×10<sup>9</sup> wild-type (WT), Δ<i>tssB1</i> (Δ<i>tssB</i>) cells or Δ<i>tssB1</i> cells producing TssB1 (<i>tssB<sup>+</sup></i>) or TssB1 deleted of the α-helix 104-130 (<i>tssB</i>Δ<i><sup>hel</sup></i>). Proteins were separated by 12.5%-acrylamide SDS-PAGE and Hcp was immunodetected using anti-FLAG monoclonal antibody (lower panel). The periplasmic TolB protein (immunodetected using an anti-TolB polyclonal antibodies, upper panel) was used as a marker to verify that no lysis occured. (B) Bacterial two-hybrid assay. BTH101 reporter cells carrying pairs of plasmids producing the indicated T6SS proteins (B, TssB1; BΔhel, TssB1 deleted of the α-helix; C1, TssC1) fused to the T18 or T25 domain of the <i>Bordetella</i> adenylate cyclase were spotted on X-Gal indicator LB agar plates.</p
The hydrophobic motif of the TssB1 α-helix is required for T6SS function and interaction with TssC1.
<p>Amino-acid sequence (A) and helical wheel projection (B) of the TssB1 α-helix (from residue Pro-103 to residue Leu-131). The different motifs described in this study are highlighted in different colours: blue, N-terminal hydrophobic; red, polar/charged; green, leucine-rich. The residues of these motifs mutagenized in this study are underlined (A) or striped (B). Top-view (C) and side-view (D) projections of the TssB1 α-helix. The targeted residues are colored as in panel (A). Top- and side-views have been modelled using PyMOL v0.99. (E) Hcp release assay. Hcp<sub>FLAG</sub> release was assessed by separating whole cells (C) and culture supernatant (SN) fractions from 2×10<sup>9</sup> Δ<i>tssB1</i> cells producing TssB1 (<i>tssB<sup>+</sup></i>) or TssB1 bearing substitutions within the hydrophobic (<i>tssB<sup>VIL</sup></i>), the polar/charged (<i>tssB<sup>RR</sup></i>) or the leucin-rich (<i>tssB<sup>LL</sup></i>) motif. Proteins were separated by 12.5%-acrylamide SDS-PAGE and Hcp and TolB were immunodetected using anti-FLAG monoclonal (lower panel) and anti-TolB polyclonal (upper panel) antibodies. (F) Bacterial two-hybrid assay. BTH101 reporter cells producing the T25 domain of the <i>Bordetella</i> adenylate cyclase fused to TssC1 (T25-C) and the T18 domain fused to TssB1 (T18-B) or TssB1 variants bearing substitutions within the hydrophobic (T18-B<sup>VIL</sup>), the polar/charged (T18-B<sup>RR</sup>) or the leucin-rich (T18-B<sup>LL</sup>) motif were spotted on X-Gal indicator LB agar plates.</p