107 research outputs found

    Investigation on the Use of a Multiphase Eulerian CFD solver to simulate breaking waves

    Get PDF
    The main challenge in CFD multiphase simulations of breaking waves is the wide range of interfacial length scales occurring in the flow: from the free surface measurable in meters down to the entrapped air bubbles with size of a fraction of a millimeter. This paper presents a preliminary investigation on a CFD model capable of handling this problem. The model is based on a solver, available in the open-source CFD toolkit OpenFOAM, which combines the Eulerian multi-fluid approach for dispersed flows with a numerical interface sharpening method. The solver, enhanced with additional formulations for mass and momentum transfer among phases, was satisfactorily tested against an experimental bubble column flow. The model was then used to simulate the propagation of a laboratory solitary breaking wave. The motion of the free surface was successfully reproduced up to the breaking point. Further implementations are needed to simulate the air entrainment phenomeno

    Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage

    Get PDF
    In the present work, we developed a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. The numerical model is based on the coupling between the porous media model and the lumped mass structural model. A novel interface was implemented to ensure efficient data exchange and element mapping between the fluid and structural solver via random-access memory. The main idea is to apply a static mesh in the fluid model, in case that large deformation of the net structure reduces the quality of the mesh. Then the geometry of the net cage was approximated by a set of dynamic porous zones, where the grid cells were updated at every iteration based on the transferred nodal positions from the structural model. A time stepping procedure was introduced, so the solver is applicable in both steady and unsteady conditions. In order to reduce the computational effort, sub-cycling was applied for the structural solver within each time step, based on the quasi-steady state assumption. The numerical model was validated against experiments in both steady and unsteady conditions. In general, the agreement is satisfactory
    • …
    corecore