169 research outputs found

    R-PEP-27, a Potent Renin Inhibitor, Decreases Plasma Angiotensin II and Blood Pressure in Normal Volunteers

    Get PDF
    The hemodynamic and humoral effects of the specific human renin inhibitor R-PEP-27 were studied in six normal human subjects on low and high sodium intake diets. An intravenous infusion of R-PEP-27 (0.5 to 16 μg/min/kg body wt) reduced blood pressure in a dose-dependent fashion; the mean arterial blood pressure at the end of the infusion fell from 128 ± 4/83 ± 4 to 119 ± 3/71 ± 3 mm Hg (mean ± SEM) (P < .01) during the low sodium intake diet. R-PEP-27 had no effect on blood pressure during the high sodium intake diet. R-PEP-27 significantly reduced plasma angiotensin II and aldosterone concentrations. The temporal response to R-PEP-27 suggests that it is a shortlived although highly potent competitive inhibitor of renin; this peptide is a valuable and specific physiologic probe of the renin-angiotensin system. Am J Hypertens 1994;7:295-30

    The effects of preeclampsia on signaling to hematopoietic progenitor cells

    Get PDF
    Background: The role of the microenvironment is important in cell differentiation. The effect of placental disease on the growth and differentiation and hematopoietic stem cells has not been well-studied. Methods: Enzyme linked immunoassay was used to measure erythropoietin and osteopontin in plasma from umbilical cord blood of children born to normotensive and preeclamptic women. Additionally, CD34+ cells were isolated from umbilical cord blood and grown in complete methylcellulose media. Colony types were identified and enumerated. Results: Differences in the concentration of erythropoietin in the cord blood between the controls and the preeclamptics approached significance (P = 0.067) using a Mann-Whitney U test. In the plasma of cord blood from children born to normotensive women, the median erythropoietin was 0.186 mIU/mL compared to 1.986 mIU/mL in children of preeclamptic women. We did not find any significant differences in the number and types of colonies; however, there was a trend toward increased BFU-E in the preeclamptic samples. Furthermore, this trend for increased BFU-E colonies was also seen from CD34+ cells isolated from umbilical cord blood of severe preeclamptics compared to mild. Conclusion: Our preliminary studies suggest that abnormalities in the placenta, such as those found when the mother experiences preeclampsia, may affect the ability of hematopoietic stem cells to grow and differentiate

    Defining normal IgG changes throughout pregnancy

    Get PDF
    Immunoglobulin G (IgG) is the major serum immunoglobulin, accounting for roughly 75% of all immunoglobulin. IgG is the only class of immunoglobulin that crosses the placenta and it serves as the main immunologic barrier between the fetus and external environments. There has not been a clear consensus on what the normal values of IgG are throughout pregnancy. The aim of this study is to measure serum immunoglobulin G in each trimester of the pregnant female to determine a normal IgG profile throughout all trimesters in normal pregnancy

    Gender-Related Differences in the Prevalence of Cardiovascular Disease Risk Factors and their Correlates in Urban Tanzania.

    Get PDF
    \ud Urban areas in Africa suffer a serious problem with dual burden of infectious diseases and emerging chronic diseases such as cardiovascular diseases (CVD) and diabetes which pose a serious threat to population health and health care resources. However in East Africa, there is limited literature in this research area. The objective of this study was to examine the prevalence of cardiovascular disease risk factors and their correlates among adults in Temeke, Dar es Salaam, Tanzania. Results of this study will help inform future research and potential preventive and therapeutic interventions against such chronic diseases. The study design was a cross sectional epidemiological study. A total of 209 participants aged between 44 and 66 years were included in the study. A structured questionnaire was used to evaluate socioeconomic and lifestyle characteristics. Blood samples were collected and analyzed to measure lipid profile and fasting glucose levels. Cardiovascular risk factors were defined using World Health Organization criteria. The age-adjusted prevalence of obesity (BMI > or = 30) was 13% and 35%, among men and women (p = 0.0003), respectively. The prevalence of abdominal obesity was 11% and 58% (p < 0.0001), and high WHR (men: >0.9, women: >0.85) was 51% and 73% (p = 0.002) for men and women respectively. Women had 4.3 times greater odds of obesity (95% CI: 1.9-10.1), 14.2-fold increased odds for abdominal adiposity (95% CI: 5.8-34.6), and 2.8 times greater odds of high waist-hip-ratio (95% CI: 1.4-5.7), compared to men. Women had more than three-fold greater odds of having metabolic syndrome (p = 0.001) compared to male counterparts, including abdominal obesity, low HDL-cholesterol, and high fasting blood glucose components. In contrast, female participants had 50% lower odds of having hypertension, compared to men (95%CI: 0.3-1.0). Among men, BMI and waist circumference were significantly correlated with blood pressure, triglycerides, total, LDL-, and HDL-cholesterol (BMI only), and fasting glucose; in contrast, only blood pressure was positively associated with BMI and waist circumference in women. The prevalence of CVD risk factors was high in this population, particularly among women. Health promotion, primary prevention, and health screening strategies are needed to reduce the burden of cardiovascular disease in Tanzania.\u

    Genome-wide meta-analysis points to CTC1 and ZNf676 as genes regulating telomere homeostasis in humans

    Get PDF
    Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9190 individuals from six independent GWAS and validated our findings in 2226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P = 9.1 × 10-11) and with the telomerase RNA component TERC (rs1317082, P = 1.1 × 10-8). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P = 3.6 × 10-8) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P = 3.3 × 10-8) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall, our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population.</p

    Genome-wide meta-analysis points to CTC1 and ZNf676 as genes regulating telomere homeostasis in humans

    Get PDF
    Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9190 individuals from six independent GWAS and validated our findings in 2226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P = 9.1 × 10-11) and with the telomerase RNA component TERC (rs1317082, P = 1.1 × 10-8). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P = 3.6 × 10-8) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P = 3.3 × 10-8) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall, our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population.</p

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Gene-Educational attainment interactions in a Multi-Population Genome-Wide Meta-Analysis Identify Novel Lipid Loci

    Get PDF

    Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci

    Get PDF
    Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: “Some College” (yes/no, for any education beyond high school) and “Graduated College” (yes/no, for completing a 4-year college degree). Genome-wide significant (p &lt; 5 × 10−8) and suggestive (p &lt; 1 × 10−6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.</p
    corecore