23 research outputs found
Using association rules mining to explore pattern of Chinese medicinal formulae (prescription) in treating and preventing breast cancer recurrence and metastasis.
published_or_final_versio
Epigenetic change in e-cardherin and COX-2 to predict chronic periodontitis
<p>Abstract</p> <p>Background</p> <p>DNA methylation of certain genes frequently occurs in neoplastic cells. Although the cause remains unknown, many genes have been identified with such atypical methylation in neoplastic cells. The hypermethylation of E-Cadherin and Cyclooxygenase 2 (COX-2) in chronic inflammation such as chronic periodontitis may demonstrate mild lesion/mutation epigenetic level. This study compares the hypermethylation status of E-Cadherin and COX-2 genes which are often found in breast cancer patients with that in chronic periodontitis.</p> <p>Methods</p> <p>Total DNA was extracted from the blood samples of 108 systemically healthy non-periodontitis subjects, and the gingival tissues and blood samples of 110 chronic periodontitis patient as well as neoplastic tissues of 106 breast cancer patients. Methylation-specific PCR for E-Cadherin and COX-2 was performed on these samples and the PCR products were analyzed on 2% agarose gel.</p> <p>Results</p> <p>Hypermethylation of E-Cadherin and COX-2 was observed in 38% and 35% of the breast cancer samples, respectively. In chronic periodontitis patients the detection rate was 25% and 19% respectively, and none was found in the systemically healthy non-periodontitis control subjects. The hypermethylation status was shown to be correlated among the three groups with statistical significance (p < 0.0001). The methylation of CpG islands in E-Cadherin and COX-2 genes in periodontitis patients occurs more frequently in periodontitis patients than in the control subjects, but occurs less frequently than in the breast cancer patients.</p> <p>Conclusions</p> <p>This set of data shows that the epigenetic change in E-Cadherin and Cyclooxygenase-2 is associated with chronic periodontitis. The epigenetic changes presented in chronic inflammation patients might demonstrate an irreversible destruction in the tissues or organs similar to the effects of cancer. Chronic periodontitis to some extent might be associated with DNA hypermethylation which is related to cancer risk factors.</p
Protein tyrosine phosphatases in glioma biology
Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas
Emodin affects ERCC1 expression in breast cancer cells
Abstract Background Multi-drug resistance to chemotherapeutic agents is a major cause of treatment failure in breast cancer. In this study, we investigated the effects of emodin on reversing the multi-drug resistance, examined the ERCC1 protein expression in breast cancer cell line, and explored the relationship between reversal of multi-drug resistance and ERCC1 protein expression. Methods MTT assay was conducted to test the cytotoxicity of adriamycin and cisplatin to MCF-7/Adr cells with and without emodin pretreatment, and Western blot was performed to examine the ERCC1 protein expression. Results MCF-7/Adr cells had 21-fold and 11-fold baseline resistances to adriamycin and cisplatin, respectively. When emodin was added to the cell culture at the concentration of 10 μg/ml, the drug resistance was reduced from 21 folds to 2.86 folds for adriamycin, and from 11 folds to 1.79 folds for cisplatin. MCF-7/Adr cells treated with two concentrations (10μg/mL and 20μg/mL) of emodin, after 2, 4, 6, 10 days, the trend of ERCC1 expression was gradually decreased and the reduction was more obvious comparatively at the concentration of 20μg/mL. Conclusions Emodin could reverse the multi-drug resistance in MCF-7/Adr cells and down-regulate ERCC1 protein expression.</p
Recommended from our members
Globo H-KLH vaccine adagloxad simolenin (OBI-822)/OBI-821 in patients with metastatic breast cancer: phase II randomized, placebo-controlled study.
PurposeThis randomized, double-blind, placebo-controlled, parallel-group, phase II trial assessed the efficacy and safety of adagloxad simolenin (OBI-822; a Globo H epitope covalently linked to keyhole limpet hemocyanin (KLH)) with adjuvant OBI-821 in metastatic breast cancer (MBC).MethodsAt 40 sites in Taiwan, USA, Korea, India, and Hong Kong, patients with MBC of any molecular subtype and ≤2 prior progressive disease events with stable/responding disease after the last anticancer regimen were randomized (2:1) to adagloxad simolenin (AS/OBI-821) or placebo, subcutaneously for nine doses with low-dose cyclophosphamide. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival, correlation of clinical outcome with humoral immune response and Globo H expression, and safety.ResultsOf 349 patients randomized, 348 received study drug. Patients with the following breast cancer subtypes were included: hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) (70.4%), triple negative (12.9%), and HER2+ (16.7%), similarly distributed between treatment arms. Median PFS was 7.6 months (95% CI: 6.5-10.9) with AS/OBI-821 (n=224) and 9.2 months (95% CI: 7.3-11.3) with placebo (n=124) (HR=0.96; 95% CI: 0.74-1.25; p=0.77), with no difference by breast cancer subtype. AS/OBI-821 recipients with anti-Globo H IgG titer ≥1:160 had significantly longer median PFS (11.1 months (95% CI: 9.3-17.6)) versus those with titers <1:160 (5.5 months (95% CI: 3.7-5.6); HR=0.52; p<0.0001) and placebo recipients (HR=0.71; p=0.03). Anti-KLH immune responses were similar at week 40 between AS/OBI-821 recipients with anti-Globo IgG titer ≥1:160 and those with anti-Globo IgG titer <1:160. The most common adverse events with AS/OBI-821 were grade 1 or 2 injection site reactions (56.7%; placebo, 8.9%) and fever (20.1%; placebo, 6.5%).ConclusionAS/OBI-821 did not improve PFS in patients with previously treated MBC. However, humoral immune response to Globo H correlated with improved PFS in AS/OBI-821 recipients, leading the way to further marker-driven studies. Treatment was well tolerated.NCT01516307