7 research outputs found

    Water depth affects submersed macrophyte more than herbivorous snail in mesotrophic lakes

    Get PDF
    IntroductionWater depth (WD) and snail abundance (SA) are two key factors affecting the growth of submersed aquatic plants in freshwater lake ecosystems. Changes in WD and SA drive changes in nutrients and other primary producers that may have direct or indirect effects on submersed plant growth, but which factor dominates the impact of both on aquatic plants has not been fully studied.MethodsTo investigate the dominant factors that influence aquatic plant growth in plateau lakes, a one-year field study was conducted to study the growth of three dominant submersed macrophyte (i.e., Vallisneria natans, Potamogeton maackianus, and Potamogeton lucens) in Erhai Lake.ResultsThe results show that, the biomass of the three dominant plants, P.maackianus, is the highest, followed by P.lucens, and V.natans is the lowest. Meanwhile, periphyton and snails attached to P.maackianus are also the highest. Furthermore, WD had a positive effect on the biomass of two submersed macrophyte species of canopy-type P.maackianus and P.lucens, while it had a negative effect on rosette-type V.natans. Snail directly inhibited periphyton attached on V.natans and thereby increasing the biomass of aquatic plants, but the effect of snails on the biomass of the other two aquatic plants is not through inhibition of periphyton attached to their plants.DiscussionThe dominant factors affecting the biomass of submersed macrophyte in Erhai Lake were determined, as well as the direct and indirect mechanisms of WD and snails on the biomass of dominant submersed macrophyte. Understanding the mechanisms that dominate aquatic plant change will have implications for lake management and restoration

    Seasonal variation and nutrient jointly drive the community structure of macrophytes in lakes with different trophic states

    Get PDF
    IntroductionMacrophytes are essential for maintaining the health of shallow lake ecosystems, however, the driving and responsive relationship between ecological factors (such as seasonal changes and nutrition, etc.) and plant communities is not yet clear.MethodsIn this study, we conducted seasonal surveys of macrophyte community composition in lakes with different nutrient states, aiming to understand the incidence relation between macrophyte community diversity, seasonal changes and environmental factors.ResultsAccording to the classification criteria of comprehensive nutritional index, there were significant differences in the trophic status of the three lakes. Among them, the Xihu Lake has reached mild eutrophication with a TLI value of 56.33, both Cibi Lake and Haixihai Lake are mesotrophic with TLI value of 36.03 and 33.48, respectively. The results of diversity analysis showed a significant negative correlation between α-diversity (include Species richness, Shannon-Wiener index, Simpson index and Pielou index) and lake nutrient status. Among them, Xihu Lake showed the lowest α-diversity in all seasons, Haixihai Lake exhibited the middle α-diversity, Cibi Lake indicated the highest α-diversity. Non-metric multidimensional ordination showed that there were obvious spatial structures differences among the macrophyte communities in the three lakes. Macrophyte community composition in the three lakes was more similar in summer and autumn, but there was a wider gap in spring and winter. The redundancy analysis indicated distinct differences between diversity index and ecological factors, the eigenvalues of Axis 1 and Axis 2 being, respectively, 36.13% and 8.15%. Environmental factors could explain 44.8% of the total variation in macrophyte communities structure. Among these, nitrogen, phosphorus, water transparency and water temperature contributed 50.2%, 3.5%, 3.8% and 27.5%, respectively.ConclusionsIn summary, the community structure of macrophytes in plateau shallow lakes is co-regulated by seasons and nutrients

    Leaf Soluble Carbohydrates, Free Amino Acids, Starch, Total Phenolics, Carbon and Nitrogen Stoichiometry of 24 Aquatic Macrophyte Species Along Climate Gradients in China

    No full text
    Leaf soluble carbohydrates (SC), free amino acids (FAA), starch, total phenolics (TOPH), carbon (C), and nitrogen (N) stoichiometry of 24 aquatic macrophyte species were studied at 52 selected sites in eastern, 31 sites in southwestern and 6 sites in western China, including 12 submerged, 6 floating-leaved, 4 emergent and 2 free-floating macrophytes. The leaf stoichiometric characteristics differed significantly among the plant species of the four different life forms, the lowest C content occurring in submerged macrophytes and the highest N content in free-floating macrophytes. Overall, though the variance explained by the linear regression models was low, the C and N contents decreased toward the northern latitudes, the C content and the C:N ratios increased with increasing altitude. Multiple regressions revealed that the stoichiometric characteristics of submerged macrophytes varied significantly across the large spatial and climatic gradients and among the species studied. For floating-leaved and emergent macrophytes, no correlation between climate factors and SC, FAA, starch, TOPH, C, and N contents and C:N ratio was observed. For free-floating macrophytes, the TOPH content was markedly positively correlated with latitude and altitude. We conclude that the C and N contents related more closely to latitude, altitude or mean annual air temperature than did the C and N metabolic indicators for the submerged macrophytes, while the relationships with the metabolic indicators turned out to be insignificant for most species of the other life forms. The results helped us to identify species with significant physiological plasticity across geographic and climatic gradients in China, and such information is useful when conducting restoration of lost aquatic plants in different climate regions.</p

    Alterations in biomass allocation indicate the adaptation of submersed macrophytes to low-light stress

    No full text
    The decline in submersed macrophytes induced by low-light stress is ubiquitous in mid-lower Yangtze lakes in China. However, the trade-offs among the adaptation mechanisms used by submersed macrophytes to low-light stress remain unclear. Moreover, the experimental period used in most previous studies was relatively short, and plant traits were not monitored multiple throughout the experimental period. In the present study, we examined the growth of a representative submersed macrophyte, Potamogeton maackianus, under four light regimes (2.8%, 7.1%, 17.1% and 39.5% of ambient light) over a course of 12 months and assessed various plant traits at monthly and quarterly intervals. The results showed that P. maackianus exhibited a lower leaf moisture content and a higher stem moisture content under decreased light conditions. Under the lowest light regime, P. maackianus had low soluble carbohydrate (SC) contents in the leaves and low starch contents in the stems at all the seasons. P. maackianus showed different allometric relationships among different treatments reflected different adaption strategies resulting from different light environment. P. maackianus exhibited a relatively stable biomass allocation pattern characterized by a continual increase in the stem mass fraction of total biomass under relatively high light transmittance (17.1% and 39.5%), which is a response of P. maackianus that can ensure a high initial biomass in the next spring season. However, under low light transmittance, the biomass allocation pattern fluctuated early in the experiment, and the amplitude increased with decreases in the light transmittance (2.8% and 7.1%). P. maackianus exhibited trade-offs between the stem (plant height) and leaf mass (leaf area) fractions of the total biomass, which help improve the adaptation of the macrophyte to a low-light environment. Our results can be useful for estimating light-use conditions of P. maackianus according to regression relationships between the leaf/stem mass fractions of the total biomass and time.</p

    Modeling the Ecological Response of a Temporarily Summer-Stratified Lake to Extreme Heatwaves

    No full text
    Climate extremes, which are steadily increasing in frequency, can have detrimental consequences for lake ecosystems. We used a state-of-the-art, one-dimensional, hydrodynamic-ecosystem model [General Ocean Turbulence Model (GOTM)-framework for aquatic biogeochemical models (FABM)-PCLake] to determine the influence of extreme climate events on a temperate and temporarily summer stratified lake (Lake Bryrup, Denmark). The model was calibrated (eight years data) and validated (two years data), and the modeled variables generally showed good agreement with observations. Then, a span of extreme warming scenarios was designed based on weather data from the heatwave seen over northern Europe in May-July 2018, mimicking situations of extreme warming returning every year, every three years, and every five years in summer and all year round, respectively. We found only modest impacts of the extreme climate events on nutrient levels, which in some scenarios decreased slightly when looking at the annual mean. The most significant impacts were found for phytoplankton, where summer average chlorophyll a concentrations and cyanobacteria biomass peaks were up to 39% and 58% higher than during baseline, respectively. As a result, the phytoplankton to nutrient ratios increased during the heat wave experiments, reflecting an increased productivity and an increased cycling of nutrients in the pelagic. The phytoplankton blooms occurred up to 15 days earlier and lasted for up to half a month longer during heat wave years relative to the baseline. Our extreme scenarios illustrated and quantified the large impacts of a past heat wave (observed 2018) and may be indicative of the future for many temperate lakes

    Water depth modulates the species richness–biomass relationship in submerged macrophytes

    Get PDF
    The effect of biodiversity on ecosystem productivity has been a controversial issue in ecological research. The species richness–productivity relationship is highly variable in natural ecosystems, with a positive relationship being one of the most commonly observed relationships. Previous regional studies from terrestrial ecosystems have demonstrated that environmental gradients can regulate the species richness–productivity relationship. However, how this relationship varies in freshwater ecosystems across spatial environment gradients remains unclear. In this study, we propose that the species richness–productivity relationship can be modulated by the water depth. Here, we surveyed the submerged macrophyte community structure by establishing 24 transects and 642 quadrats in Erhai Lake, Yunnan Plateau, China. Our findings highlight that the species richness–productivity relationship gradually changed from slightly positive to strongly positive as the environment became more light-limited with the increasing water depth, supporting the stress-gradient hypothesis. The results from this study provide new insights into the biodiversity–ecosystem functioning relationships and in managing lake macrophyte communities and productivity
    corecore