5 research outputs found

    Microstructure of a spark-plasma-sintered Fe2VAl-type Heusler alloy for thermoelectric application

    Full text link
    The influence of microstructure on thermoelectricity is increasingly recognized. Approaches for microstructural engineering can hence be exploited to enhance thermoelectric performance, particularly through manipulating crystalline defects, their structure, and composition. Here, we focus on a full-Heusler Fe2VAl-based compound that is one of the most promising thermoelectric materials containing only Earth-abundant, non-toxic elements. A Fe2VTa0.05Al0.95 cast alloy was atomized under a nitrogen-rich atmosphere to induce nitride precipitation. Nanometer- to micrometer-scale microstructural investigations by advanced scanning electron microscopy and atom probe tomography (APT) are performed on the powder first and then on the material consolidated by spark-plasma sintering for an increasing time. APT reveals an unexpected pick-up of additional impurities from atomization, namely W and Mo. The microstructure is then correlated with local and global measurements of the thermoelectric properties. At grain boundaries, segregation and precipitation locally reduce the electrical resistivity, as evidenced by in-situ four-point probe measurements. The final microstructure contains a hierarchy of structural defects, including individual point defects, dislocations, grain boundaries, and precipitates, that allow for a strong decrease in thermal conductivity. In combination, these effects provide an appreciable increase in thermoelectric performance

    New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturing

    Get PDF
    Ultrasonic atomization is one of the promising technologies for producing metal powders for additive manufacturing, where precise control of particle size and morphology is essential. In this study, we coupled an ultrasonic transducer with a carbon fiber plate and atomized liquid droplets and films under different vibration amplitudes. Water, glycerol, and pure aluminum melt were used to study the atomization mechanism and the resulting droplet/powder characteristics, respectively. High-speed optical and ultrafast synchrotron X-ray imaging were used to study in situ the ultrasonic atomization dynamics, including pulsation and clustering of cavities inside the liquid layer/films, development of capillary waves, and formation of liquid droplets. For the first time, we observed and captured the occurrence of cavitation during the atomization of resting drops, films and impact droplets. The inertial cavitation events interfered with the capillary waves across the interphase boundary, puncturing and breaking the boundary to produce atomized mist. The in situ observation revealed the intricate dynamics of ultrasonic atomization and underscored the pivotal role of cavitation events throughout the entire atomization process. We also conducted experiments on ultrasonic atomization of liquid aluminum, producing particles of perfectly spherical shape. The particle size tended to decrease with reduced vibration amplitude Our work has demonstrated the important processing strategies on how to tailor the particle size while ensuring consistent particle shape and morphology, which is the key processing capability for producing high quality powders for additive manufacturing applications

    Atomisation of Ti-6Ta-1.5Zr-0.2Ru-5Cu (wt%) for additive manufacturing for biomedical applications

    No full text
    The use of titanium alloys is growing fast as people have longer life expectancies and small, customised, biomedical implants, especially in dental applications, encourage the use of additive manufacturing (AM) to shape them. The Ti-6Ta-1.5Zr-0.2Ru-5Cu (wt%) alloy has been identified as a potential alloy for biomedical applications. Since laser powder bed fusion (L-PBF) requires starting powders to be spherical and within a 10-100 μm size range, the Ti-6Ta-1.5Zr-0.2Ru-5Cu (wt%) powder was ultrasonically atomised and then analysed by a Malvern Mastersizer, XRD and SEM-EDX to ascertain that it met the requirements of L-PBF

    Spherical powders: Control over the size and morphology of powders for additive manufacturing and enriched stable isotope nuclear targets

    No full text
    Metal powders are a fundamental starting point for fabricating many types of nuclear targets. Elemental powder properties can differ drastically between batches, even when using the same method. Therefore, the variation in morphology and the size of metal powders can cause variable quality and produce inconsistent results with what are otherwise proven target manufacturing techniques. Additive manufacturing has additional requirements for higher quality and more uniform feedstock. The production of spheroidized powders with uniform, reproducible properties and a narrow size distribution represents unexplored opportunities for experiments. These opportunities include experimenting with solid metals that can now flow like liquids, new options for powder handling and dispensing, and new target fabrication methods using additive manufacturing. The Stable Isotope Materials and Chemistry Group at Oak Ridge National Laboratory obtained an AMAZEMET rePowder ultrasonic metal atomization tool for creating limited batches of fully dense, free flowing, spherical powders with a narrow size distribution of extremely rare materials. Early results are presented with materials that were produced. The team explores the anticipated limits of this instrument with extremely rare materials (e.g., enriched stable isotopes) and highlights research into new fabrication techniques that provide additional options benefitting the international nuclear target community
    corecore