4,874 research outputs found

    Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions

    Get PDF
    Manipulation of spin states at the single-atom scale underlies spin-based quantum information processing and spintronic devices. Such applications require protection of the spin states against quantum decoherence due to interactions with the environment. While a single spin is easily disrupted, a coupled-spin system can resist decoherence by employing a subspace of states that is immune to magnetic field fluctuations. Here, we engineered the magnetic interactions between the electron spins of two spin-1/2 atoms to create a clock transition and thus enhance their spin coherence. To construct and electrically access the desired spin structures, we use atom manipulation combined with electron spin resonance (ESR) in a scanning tunneling microscope (STM). We show that a two-level system composed of a singlet state and a triplet state is insensitive to local and global magnetic field noise, resulting in much longer spin coherence times compared with individual atoms. Moreover, the spin decoherence resulting from the interaction with tunneling electrons is markedly reduced by a homodyne readout of ESR. These results demonstrate that atomically-precise spin structures can be designed and assembled to yield enhanced quantum coherence

    The Employment Hope Scale: Measuring an Empowerment Pathway to Employment Success

    Get PDF
    This chapter presents findings on revalidation of the Short Employment Hope Scale (EHS- 14) using a recently collected independent sample of 661 low-income jobseekers. This client- centered measure captures an aspect of multi-dimensional psychological self-sufficiency (SS) as a process-driven assessment tool. The original employment hope metric was constructed as a 24-item six-factor structure from its earlier conceptualization resulting from client focus group interviews. The EHS measure was initially validated using an exploratory factor analysis (EFA), resulting in a 14-item two-factor structure with Factor 1 representing ‘psychological empowerment’ and Factor 2 representing ‘goal-oriented pathways’. In the following revalidation process using a confirmatory factor analysis (CFA), this 14-item two-factor EHS was modified into a 14-item four-factor EHS-14, with two higher order components, based on the original theoretical suggestion. The CFA result on the modified model adds another evidence for generalization, indicating that EHS-14 is a consistent and valid tool

    Self-consistent predictions for LIER-like emission lines from post-AGB stars

    Full text link
    Early type galaxies (ETGs) frequently show emission from warm ionized gas. These Low Ionization Emission Regions (LIERs) were originally attributed to a central, low-luminosity active galactic nuclei. However, the recent discovery of spatially-extended LIER emission suggests ionization by both a central source and an extended component that follows a stellar-like radial distribution. For passively-evolving galaxies with old stellar populations, hot post-Asymptotic Giant Branch (AGB) stars are the only viable extended source of ionizing photons. In this work, we present the first prediction of LIER-like emission from post-AGB stars that is based on fully self-consistent stellar evolution and photoionization models. We show that models where post-AGB stars are the dominant source of ionizing photons reproduce the nebular emission signatures observed in ETGs, including LIER-like emission line ratios in standard optical diagnostic diagrams and Hα\alpha equivalent widths of order 0.1-3 angstroms. We test the sensitivity of LIER-like emission to the details of post-AGB models, including the mass loss efficiency and convective mixing efficiency, and show that line strengths are relatively insensitive to post-AGB timescale variations. Finally, we examine the UV-optical colors of the models and the stellar populations responsible for the UV-excess observed in some ETGs. We find that allowing as little as 3% of the HB population to be uniformly distributed to very hot temperatures (30,000 K) produces realistic UV colors for old, quiescent ETGs.Comment: ApJ accepted. 20 pages, 8 figure

    Deep u*- and g-band Imaging of the Spitzer Space Telescope First Look Survey Field : Observations and Source Catalogs

    Get PDF
    We present deep u*-, and g-band images taken with the MegaCam on the 3.6 m Canada-France-Hawaii Telescope (CFHT) to support the extragalactic component of the Spitzer First Look Survey (hereafter, FLS). In this paper we outline the observations, present source catalogs and characterize the completeness, reliability, astrometric accuracy and number counts of this dataset. In the central 1 deg2 region of the FLS, we reach depths of g~26.5 mag, and u*~26.2 mag (AB magnitude, 5σ\sigma detection over a 3" aperture) with ~4 hours of exposure time for each filter. For the entire FLS region (~5 deg2 coverage), we obtained u*-band images to the shallower depth of u*=25.0--25.4 mag (5σ\sigma, 3" aperture). The average seeing of the observations is 0.85" for the central field, and ~1.00" for the other fields. Astrometric calibration of the fields yields an absolute astrometric accuracy of 0.15" when matched with the SDSS point sources between 18<g<22. Source catalogs have been created using SExtractor. The catalogs are 50% complete and greater than 99.3% reliable down to g~26.5 mag and u*~26.2 mag for the central 1 deg2 field. In the shallower u*-band images, the catalogs are 50% complete and 98.2% reliable down to 24.8--25.4 mag. These images and source catalogs will serve as a useful resource for studying the galaxy evolution using the FLS data.Comment: 15 pages, 16 figure

    The Impact of Tidal Interactions on Satellite Galaxies: A Study of the M31 Satellites, M32 & NGC 205

    Full text link
    Surface photometry of the M31 satellites M32 and NGC 205 is compared to numerical simulations of satellite destruction to constrain orbital parameters and the interaction history of the M31 subgroup. Our analysis reveals the following preliminary results: (1) Generic features of tidal disruption in the simulations include an extended ``extra-tidal'' excess region and an inner depletion zone, both of which are observed in M32 and NGC 205; (2) M32 is likely to be on a highly eccentric orbit well away from pericenter; (3) Surface brightness and luminosity evolution estimates for M32, the prototypical compact elliptical galaxy, imply that it is not simply the residual core of a tidally-stripped normal elliptical galaxy, but was instead formed in a truncated state.Comment: 4 pages, 2 figures, to appear in the proceedings of the Yale Cosmology Workshop "The Shapes of Galaxies and their Halos", (ed. P. Natarjan

    Co-Existence Test of Primordial Black Holes and Particle Dark Matter

    Full text link
    If dark matter (DM) consists of primordial black holes (PBHs) and particles simultaneously, PBHs are generically embedded within particle DM halos. Such "dressed PBHs" (dPBHs) are not subject to typical PBH constraints and can explain the DM abundance in the mass range 101102M10^{-1} \sim 10^2 M_\odot. We show that diffractive lensing of chirping gravitational waves (GWs) from binary mergers can not only discover, but can also identify dPBH lenses and discriminate them from bare PBHs on the event-by-event basis, with potential to uniquely establish the co-existence of subdominant PBHs and particle DM.Comment: 13 pages, 6 figure

    Spitzer Mid-Infrared Spectroscopy of Infrared Luminous Galaxies at z~2 II: Diagnostics

    Get PDF
    We present mid-IR spectral decomposition of a sample of 48 Spitzer-selected ULIRGs spanning z~1-3 and likely L_IR~10^12-10^13Lsun. Our study aims at quantifying the star-formation and AGN processes in these sources which recent results suggest have evolved strongly between the observed epoch and today. To do this, we study the mid-IR contribution of PAH emission, continuum, and extinction. About 3/4 of our sample are continuum- (i.e. AGN) dominated sources, but ~60% of these show PAH emission, suggesting the presence of star-formation activity. These sources have redder mid-IR colors than typical optically-selected quasars. About 25% of our sample have strong PAH emission, but none are likely to be pure starbursts as reflected in their relatively high 5um hot dust continua. However, their steep 30um-to-14um slopes suggest that star-formation might dominate the total infrared luminosity. Six of our z~2 sources have EW6.2>~0.3um and L_14um>~10^12Lsun (implying L_IR>~10^13Lsun). At these luminosities, such high EW6.2 ULIRGs do not exist in the local Universe. We find a median optical depth at 9.7um of =1.4. This is consistent with local IRAS-selected ULIRGs, but differs from early results on SCUBA-selected z~2 ULIRGs. Similar to local ULIRGs about 25% of our sample show extreme obscuration (tau_9.7>~3) suggesting buried nuclei. In general, we find that our sources are similar to local ULIRGs, but are an order of magnitude more luminous. It is not clear whether our z~2 ULIRGs are simply scaled-up versions of local ULIRGs, or subject to fundamentally different physical processes.Comment: 60 pages, 15 figures, accepted for publication in Ap
    corecore