5,091 research outputs found
Control of critical coupling in a ring resonator fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation
By controlling the internal loss of a ring resonator near critical coupling, we demonstrate control of the transmitted power in a fiber that is coupled to the resonator. We also demonstrate wavelength-selective optical amplification and oscillation
Active coupled-resonator optical waveguides. II. Current injection InP-InGaAsP Fabry-Perot resonator arrays
We investigate active, electrically pumped coupled-resonator optical waveguides (CROWs) in the form of InP-InGaAsP Fabry-Perot resonator arrays. We discuss the fabrication of these devices and present measurements of the transmission spectra. The signal-to-noise ratio is found to be a strong function of wavelength and degraded rapidly along the resonator chain away from the input. Our results highlight a number of ingredients toward practical implementations loss-compensated and amplifying CROWs
Two-dimensional Bragg grating lasers defined by electron-beam lithography
Two-dimensional Bragg grating (2DBG) lasers with two quarter-wave slip line defects have been designed and fabricated by electron-beam lithography and reactive ion etching. Unlike conventional two-dimensional photonic crystal defect lasers, which use a large refractive index perturbation to confine light in a plane, the 2DBG structures described here selectively control the longitudinal and transverse wave vector components using a weak index perturbation. Two line defects perpendicular to each other are introduced in the 2DBG to define the optical resonance condition in the longitudinal and transverse directions. In this article, we describe the lithography process used to pattern these devices. The 2DBG lasers were defined using polymethylmethacrylate resist exposed in a Leica Microsystems EBPG 5000+ electron-beam writer at 100 kV. A proximity correction code was used to obtain a uniform pattern distribution over a large area, and a dosage matrix was used to optimize the laser design parameters. Measurements of electrically pumped 2DBG lasers showed modal selection in both the longitudinal and transverse directions due to proper design of the grating and defects, making them promising candidates for single-mode, high power, high efficiency, large-area lasers
F-term uplifting via consistent D-terms
The issue of fine-tuning necessary to achieve satisfactory degree of
hierarchy between moduli masses, the gravitino mass and the scale of the
cosmological constant has been revisited in the context of supergravities with
consistent D-terms. We have studied (extended) racetrack models where
supersymmetry breaking and moduli stabilisation cannot be separated from each
other. We show that even in such cases the realistic hierarchy can be achieved
on the expense of a single fine-tuning. The presence of two condensates changes
the role of the constant term in the superpotential, W_0, and solutions with
small vacuum energy and large gravitino mass can be found even for very small
values of W_0. Models where D-terms are allowed to vanish at finite vevs of
moduli fields - denoted `cancellable' D-terms - and the ones where D-terms may
vanish only at infinite vevs of some moduli - denoted `non-cancellable' -
differ markedly in their properties. It turns out that the tuning with respect
to the Planck scale required in the case of cancellable D-terms is much weaker
than in the case of non-cancellable ones. We have shown that, against
intuition, a vanishing D-term can trigger F-term uplifting of the vacuum energy
due to the stringent constraint it imposes on vacuum expectation values of
charged fields. Finally we note that our models only rely on two dimensionful
parameters: M_P and W_0.Comment: 10 pages, 2 figures, plain Latex, references adde
Completely positive maps with memory
The prevailing description for dissipative quantum dynamics is given by the
Lindblad form of a Markovian master equation, used under the assumption that
memory effects are negligible. However, in certain physical situations, the
master equation is essentially of a non-Markovian nature. This paper examines
master equations that possess a memory kernel, leading to a replacement of
white noise by colored noise. The conditions under which this leads to a
completely positive, trace-preserving map are discussed for an exponential
memory kernel. A physical model that possesses such an exponential memory
kernel is presented. This model contains a classical, fluctuating environment
based on random telegraph signal stochastic variables.Comment: 4 page
BCL-W has a fundamental role in B cell survival and lymphomagenesis.
Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation-induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family-targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies
Recoiling from a kick in the head-on collision of spinning black holes
Recoil ``kicks'' induced by gravitational radiation are expected in the
inspiral and merger of black holes. Recently the numerical relativity community
has begun to measure the significant kicks found when both unequal masses and
spins are considered. Because understanding the cause and magnitude of each
component of this kick may be complicated in inspiral simulations, we consider
these effects in the context of a simple test problem. We study recoils from
collisions of binaries with initially head-on trajectories, starting with the
simplest case of equal masses with no spin and then adding spin and varying the
mass ratio, both separately and jointly. We find spin-induced recoils to be
significant relative to unequal-mass recoils even in head-on configurations.
Additionally, it appears that the scaling of transverse kicks with spins is
consistent with post-Newtonian theory, even though the kick is generated in the
nonlinear merger interaction, where post-Newtonian theory should not apply.
This suggests that a simple heuristic description might be effective in the
estimation of spin-kicks.Comment: 12 pages, 10 figures. Replaced with published version, including more
discussion of convergence and properties of final hol
The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction
The Cucumber mosaic virus (CMV) 2b protein is a counter-defense factor and symptom determinant. Conserved domains in the 2b protein sequence were mutated in the 2b gene of strain Fny-CMV. The effects of these mutations were assessed by infection of Nicotiana tabacum, N. benthamiana, and Arabidopsis thaliana (ecotype Col-0) with mutant viruses and by expression of mutant 2b transgenes in A. thaliana. We confirmed that two nuclear localization signals were required for symptom induction and found that the N-terminal domain was essential for symptom induction. The C-terminal domain and two serine residues within a putative phosphorylation domain modulated symptom severity. Further infection studies were conducted using Fny-CMVΔ2b, a mutant that cannot express the 2b protein and that induces no symptoms in N. tabacum, N. benthamiana, or A. thaliana ecotype Col-0. Surprisingly, in plants of A. thaliana ecotype C24, Fny-CMVΔ2b induced severe symptoms similar to those induced by the wild-type virus. However, C24 plants infected with the mutant virus recovered from disease while those infected with the wild-type virus did not. Expression of 2b transgenes from either Fny-CMV or from LS-CMV (a mild strain) in Col-0 plants enhanced systemic movement of Fny-CMVΔ2b and permitted symptom induction by Fny-CMVΔ2b. Taken together, the results indicate that the 2b protein itself is an important symptom determinant in certain hosts. However, they also suggest that the protein may somehow synergize symptom induction by other CMV-encoded factors
- …