143 research outputs found
A Training Method for the Speech Controlled Environmental Control System Based on Candidate Word Discriminations
This paper proposes a concept of a training system for the speech controlled environmental control system: Bio-Remote based on candidate word discriminations. The proposed system can provide three-types of voice signal training: (1) volume, (2) tempo/timing and (3) candidate word which are important for accurate speech recognition based on false recognition results. During the training, such three kinds of features are extracted from measured voice signals and visually and auditory fed back to the user in real time. This allows the user to train speech abilities even if false recognition results are extracted because of slurred speech. The efficacy of the proposed system was demonstrated through training experiments for slurred speech conducted with healthy participants. The results showed that the proposed system was capable for the training of speech abilities.This work was partially supported by JSPS/MEXT KAKENHI Grant Numbers 17K12723 and 26330226
Recurrent Meningitis in an 11-year-old Girl with a Petrous Apex Cystic Lesion
Cases of recurrent meningitis in elderly patients with a spontaneous cerebrospinal fistula have been reported, and in some of these patients, cystic lesions were thought to be the underlying cause. We report a case of recurrent meningitis in an 11-year-old Japanese girl with an arachnoid cyst in the petrous apex. Pulsation of the cystic lesion was thought to cause bone erosion, leading to the formation of a fistula. Magnetic resonance imaging was useful in evaluating the arachnoid cyst and fistula. During 2 years of follow-up, the osteolytic lesion enlarged and the rate of bone erosion was higher than expected
The bifurcation angle is associated with the progression of saccular aneurysms
The role of the bifurcation angle in progression of saccular intracranial aneurysms (sIAs) has been undetermined. We, therefore, assessed the association of bifurcation angles with aneurysm progression using a bifurcation-type aneurysm model in rats and anterior communicating artery aneurysms in a multicenter case-control study. Aneurysm progression was defined as growth by ≥ 1 mm or rupture during observation, and controls as progression-free for 30 days in rats and ≥ 36 months in humans. In the rat model, baseline bifurcation angles were significantly wider in progressive aneurysms than in stable ones. In the case-control study, 27 and 65 patients were enrolled in the progression and control groups. Inter-observer agreement for the presence or absence of the growth was excellent (κ coefficient, 0.82; 95% CI, 0.61-1.0). Multivariate logistic regression analysis showed that wider baseline bifurcation angles were significantly associated with subsequent progressions. The odds ratio for the progression of the second (145°-179°) or third (180°-274°) tertiles compared to the first tertile (46°-143°) were 5.5 (95% CI, 1.3-35). Besides, the bifurcation angle was positively correlated with the size of aneurysms (Spearman's rho, 0.39; P = 0.00014). The present study suggests the usefulness of the bifurcation angle for predicting the progression of sIAs
Patient-reported dyspnea and health predict waitlist mortality in patients waiting for lung transplantation in Japan
Background: Waitlist mortality due to donor shortage for lung transplantation is a serious problem worldwide. Currently, the selection of recipients in Japan is mainly based on the registration order. Hence, scientific evidence for risk stratification regarding waitlist mortality is urgently needed. We hypothesized that patient-reported dyspnea and health would predict mortality in patients waitlisted for lung transplantation. Methods: We analyzed factors related to waitlist mortality using data of 203 patients who were registered as candidates for lung transplantation from deceased donors. Dyspnea was evaluated using the modified Medical Research Council (mMRC) dyspnea scale, and the health status was determined with St. George's Respiratory Questionnaire (SGRQ). Results: Among 197 patients who met the inclusion criteria, the main underlying disease was interstitial lung disease (99 patients). During the median follow-up period of 572 days, 72 patients died and 96 received lung transplantation (69 from deceased donors). Univariable competing risk analyses revealed that both mMRC dyspnea and SGRQ Total score were significantly associated with waitlist mortality (p = 0.003 and p < 0.001, respectively) as well as age, interstitial lung disease, arterial partial pressure of carbon dioxide, and forced vital capacity. Multivariable competing risk analyses revealed that the mMRC and SGRQ score were associated with waitlist mortality in addition to age and interstitial lung disease. Conclusions: Both mMRC dyspnea and SGRQ score were significantly associated with waitlist mortality, in addition to other clinical variables such as patients' background, underlying disease, and pulmonary function. Patient-reported dyspnea and health may be measured through multi-dimensional analysis (including subjective perceptions) and for risk stratification regarding waitlist mortality
Development of Gas Multiplier Counters (GMCs) Onboard the 6U CubeSat X-Ray Observatory NinjaSat
We report the development of Gas Multiplier Counters (GMCs) onboard the 6U CubeSat X-ray observatory NinjaSat, scheduled to be launched in October 2023. GMC is a 1U-size non-imaging gas X-ray detector sensitive to 2–50 keV X-rays, and two identical GMCs are mounted on NinjaSat. GMC consists of a gas cell filled with a xenon/argon/dimethyl ether (75%/24%/1%) gas mixture with a pressure of 1.2 atm at 0◦C, a high voltage supply and analog signal processing board, a digital signal processing board, an X-ray collimator of a 2.1◦ field of view, and an iron-55 calibration source. The most significant feature of the GMC is its large effective area of 32 cm2 at 6 keV, which is more than two orders of magnitude larger than the X-ray detectors onboard previously launched CubeSats. We have achieved this at a low cost and in a short development time by employing a gas detector that can easily increase its effective area and using a space-proven gas electron multiplier. GMC was characterized with X-rays from an X-ray generator in a laboratory and monochromatic X-rays on the BL-14A beamline at the KEK synchrotron radiation facility. In this paper, we present the design of GMC and the preliminary results of the detector calibration
NinjaSat: 6U CubeSat Observatory for Bright X-Ray Sources
NinjaSat is a 6U CubeSat observatory designed for long-term monitoring of bright X-ray sources, such as binary systems between normal stars and black holes or neutron stars. NinjaSat is the first Japanese CubeSat dedicated to astronomical observation, and it is also a mission to demonstrate that even a small satellite, which can be developed quickly and inexpensively, unlike large satellites, can perform excellent scientific observations. NinjaSat realizes the world’s highest X-ray sensitivity in CubeSat missions by using gas X-ray detectors filling the entire space allocated for science payloads. The fabrication of the flight model payloads began in 2021, and testing at the payload component level was completed in August 2022; as of April 2023, the payloads were integrated into the Nano Avionics 6U bus (M6P) in Lithuania. After four months of testing, the payload will be stored in the Exolaunch deployer in August and launched by the SpaceX Transporter-9 mission in October 2023. This paper will describe the scientific objectives, satellite structure, payloads, and operations of NinjaSat
Development of Radiation Belt Monitors for the 6U CubeSat X-Ray Observatory NinjaSat
NinjaSat is a 6U CubeSat-sized X-ray observatory to be launched into the low Earth orbit at an altitude of 550 km, and is scheduled for launch this October. NinjaSat is equipped with two 1U-sized gas X-ray detectors (GMC) and is expected to operate mainly for astronomical observations of bright X-ray objects in the sky, such as neutron stars and black holes.
Since high voltages are applied to the gas cells of GMC, two radiation belt monitors (RBM) will also be installed to protect GMC from electrical discharges potentially caused by excessively high rate of charged particles. NinjaSat RBM will play a fail-safe function in the voltage suppression operation of GMC in the auroral zone and South Atlantic Anomaly, and also protect GMC from charged particles such as protons and electrons that arrive unexpectedly due to solar flares or other low-Earth orbit radiation events.
RBM uses a 9 mm x 9 mm Si-PIN photodiode as a charged particle sensor. By taking advantage of the difference in sensor response to protons and electrons, the sensor is designed to simultaneously count charged particle rates at multiple energy thresholds so that GMC protection function will operate even if either the proton or electron rate increases. RBM can count up to about 10 kcps with almost no loss of counts, and proton beam tests have confirmed that the response performance is sufficient to protect GMC against excessively high charged particle rates above 10 Mcps without choking the circuitry.
The flight models of the RBM have passed the thermal vacuum and vibration tests last year. The developed RBM occupies only about 6% of the 1U CubeSat size in volume and weighs only 70g. In addition, since the RBM uses inexpensive, commercially available sensors, it could be installed on small satellites other than NinjaSat with relatively small development resources
NinjaSat: Initial Operation Results of the First Japanese 6U CubeSat for Bright X-ray Sources
We report the initial operation results of the first Japanese 6U CubeSat X-ray observatory NinjaSat, which was launched into a sun-synchronous orbit at an altitude of 530 km on November 11, 2023, by the SpaceX Transporter-9 mission. NinjaSat is designed to observe bright X-ray sources in the sky, such as black holes and neutron stars, which are often difficult to observe with modern large X-ray satellites due to instrument limitations. After the payload verification, NinjaSat observed the Crab Nebula on February 9 and correctly detected the 33.8 ms pulsation from the neutron star. With this observation, NinjaSat met the minimum success criteria. NinjaSat observed 10 X-ray sources by June 20 and successfully demonstrated that many X- ray sources can be observed even with a CubeSat, which is limited in terms of resources available for science payloads. Specifically, NinjaSat conducted the follow-up observation of a newly discovered X-ray transient SRGA J144459.2−604207 two days after its discovery, detecting multiple type I X-ray bursts. NinjaSat also observed type II X-ray bursts from a rapid burster MXB 1730−335. To the best of our knowledge, these are the first observations of X-ray bursts with a CubeSat, enabled by the large effective area of NinjaSat. NinjaSat continues observations to achieve full success and extra success
Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease
Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-B regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet\u27s disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-B signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IBα and nuclear translocation of the NF-B p65 subunit together with increased expression of NF-B-mediated proinflammatory cytokines. A20 restricts NF-B signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-B-dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease
- …