9 research outputs found
Instanton Content of the SU(3) Vacuum
We study the topological content of the SU(3) vacuum using the
renormalization group (RG) mapping method. RG mapping is a simple smoothing
algorithm, in which a series of APE-smearing steps are done while the
topological content of the configuration is carefully monitored. This
monitoring process makes it possible to separate true topological objects from
vacuum fluctuations and allows an extrapolation to zero smearing steps. Using
RG mapping we have measured the instanton distribution and topological
susceptibility for SU(3) gauge theory. We arrive at a value for the topological
susceptibily, of 203(5) MeV. The size distribution peaks at
fm, and is in good agreement with the prediction of instanton liquid
models.Comment: 12 pages, 4 figure
MONO-ENERGETIC BEAMS FROM LASER PLASMA INTERACTIONS*
Abstract A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100% electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing >200 pC charge above 80 MeV and with normalized emittance estimated at < 2 -mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4 TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality
Proof-of-Principle Experiment for FEL-Based Coherent Electron Cooling,â
Abstract Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, highintensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC
Recommended from our members
Improving Between-Shot Fusion Data Analysis with Parallel Structures
In the Phase I project we concentrated on three technical objectives to demonstrate the feasibility of the Phase II project: (1) the development of a parallel MDSplus data handler, (2) the parallelization of existing fusion data analysis packages, and (3) the development of techniques to automatically generate parallelized code using pre-compiler directives. We summarize the results of the Phase I research for each of these objectives below. We also describe below additional accomplishments related to the development of the TaskDL and mpiDL parallelization packages
Recommended from our members
All-optical beamlet train generation
One of the critical issues for the development of Laser Wake Field Acceleration (LWFA), which has the promise of creating table-top, GeV accelerators, is the loading of beamlets into the accelerating buckets. All optical injection schemes, which include LILAC, beat-wave colliding pulse injection, wave breaking injection, and phase-kick injection, provide a technique for doing so. Although a single bunch can have desirable properties such as energy spread of the order of a few percent, femtosecond duration k and low emittance (<1 mm-mrad), recent simulations show that such methods lead to efficiencies of transfer of plasma wave energy to beam energy that are low compared with conventional RF accelerators when only a single pulse is generated. Our latest simulations show that one can improve on this situation through the generation of a beamlet train. This can occur naturally through phase-kick injection at the front of the train and transverse wave breaking for the trailing pulses. The result is an efficiency improvement of the order of the number of beamlets in the train
Recommended from our members
Mono-Energetic Beams from Laser Plasma Interactions
A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing >200 pC charge above 80 MeV and with normalized emittance estimated at <2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality
Recommended from our members
Mono-Energetic Beams from Laser Plasma Interactions
A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing >200 pC charge above 80 MeV and with normalized emittance estimated at <2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality
Recommended from our members
Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources
Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications