5 research outputs found
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ 3-Π΄ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ ΡΠΊΡΡΡΠΎΠ»Π΄ΠΎΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡΡ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π΄Π»Ρ ΠΊΠΎΡΡΠ½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠΈΠΈ
Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠΊΠ°Π½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ
ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΡΡ
ΡΠΊΡΡΡΠΎΠ»Π΄ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»ΠΈΠ³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±ΡΡΠΈΡΠ°ΡΠ° ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΈΠ³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±ΡΡΠΈΡΠ°Ρ-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ²Π°Π»Π΅ΡΠ°ΡΠ° Ρ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡΡ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΏΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΊΡΡΡΠΎΠ»Π΄Π°, ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΡ
ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΈ ΡΡΡΡΠΊΡΡΡΡ. Π‘ΠΊΡΡΡΠΎΠ»Π΄Ρ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΎΡΠ° 1200 ΠΈΠ»ΠΈ 600 ΠΎΠ±/ΠΌΠΈΠ½. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΏΠΎΠΊΡΡΡΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΏΠΎΠ²ΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΊΡΡΡΠΎΠ»Π΄Π° ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ ΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ° ΠΊΠ°Π»ΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»Π°ΡΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²Π°Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° Π² ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
Ρ
Π»ΠΎΡΠΈΡΡΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΡΠΈΡ ΠΈ ΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ° Π½Π°ΡΡΠΈΡ. ΠΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΌΠ°ΡΡΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ. ΠΠ»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΠΊΡΡΡΠΎΠ»Π΄ΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»Π°ΡΡ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ. ΠΠ»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΠΉ ΡΠ°Π·ΠΎΠ²ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈ ΡΠ½Π΅ΡΠ³ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠ°Ρ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ
Influence of Anodization Time and Voltage on the Parameters of TiO[2] Nanotubes
A vertically aligned titania nanotube layer was obtained by electrochemical anodic oxidation in the electrolyte contained 0.4 wt% solution of NH[4]F in 54 ml of ethylene glycol and 5 ml of deionized water, after titanium was chemically cleaned/etched with a mixture of HCl, H[2]O and HNO[3] solution for removing the natural oxide films. The morphology and composition of the titania nanotube layer were examined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The anodization of TiO[2] nanotubes was done using 60 V for 240 min and 30 min, and 30 V for 30 min. The diameter of the titania nanotubes was about 52-156 nm, the wall thickness about 32-53 nm and the height about 0.9-6.3 [mu]m. The pore size of TiO[2] nanotubes influences the dissolution rate of CaP thin films and Young's modulus, which is significantly lower than that of the Ti substrate. Our future challenge will be investigation of the microstructure and mechanical behavior of titania nanotubes with CaP film
Influence of Calcium-Phosphate Coating on Wettability of Hybrid Piezoelectric Scaffolds
Herein, electrospun biodegradable scaffolds based on polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB) and polyaniline (PANi) polymers were fabricated. A calcium-phosphate (CaP) coating was deposited on the surface of the scaffolds via an improved soaking process. Influence of the deposition cycles and ethanol concentration in the solution on the relative increase of the scaffolds weight and water contact angle (WCA) are determined. The characterization of the molecular and crystal structure confirmed the formation of CaP phase. Importantly, WCA results showed that the pristine scaffolds have the hydrophobic surface, while the deposition of CaP coating onto scaffolds allows to significantly improve the surface wetting behavior, and infiltration of the water droplets into the CaP-coated scaffolds was observed. Thus, the fabricated hybrid biodegradable piezoelectric scaffolds can be utilized for regenerative medicine