2 research outputs found

    Investigating deep CNNs models applied in kinship verification through facial images

    Full text link
    Abstract The kinship verification through facial images is ana ctive research topic due to its potential applications. In this paper, we propose an approach which takes two images as input then give kinship result (kinship / No-kinship) as an output. our approach based on the deep learning model (ResNet) for the feature extraction step, alongside with our proposed pair feature representation function and RankFeatures (Ttest) for feature selection to reduce the number of features finally we use the SVM classifier for the decision of kinship verification. The approach contains three steps which are: (1) face preprocessing, (2) deep features extraction and pair features representation (3) Classification. Experiments are conducted on five public databases. The experimental results show that our approach is comparable with existed approaches

    Kinship verification using mixed descriptors and multi block face representation

    Full text link
    Abstract Kinship verification is a challenging problem that recently attracted much interest in computer vision, this system has a number of applications such as organizing large collections of images and recognizing resemblances among humans and search for lost people. In this work, we propose a new method based on different descriptors mixed such as (LBP, LPQ, BSIF), and the Multi-Block (MB) representation. and we investigate the effect of different features representation for kinship verification, Moreover, the use of TTest to reduce the number of features and the support vector machine (SVM) for the kinship classification. Our approach consists of five stages: (1) features extraction, (2) face representation (3) features representation, (4) features selection and (5) classification. Our approach is tested on five datasets (Cornell, UB Kin Face, Familly 101, KinFac W-I and W-II). Our results are good comparable with other approaches
    corecore