5,122 research outputs found

    Unified structure for exact towers of scar states in the AKLT and other models

    Get PDF
    Quantum many-body scar states are many-body states with finite energy density in non-integrable models that do not obey the eigenstate thermalization hypothesis. Recent works have revealed "towers" of scar states that are exactly known and are equally spaced in energy, specifically in the AKLT model, the spin-1 XY model, and a spin-1/2 model that conserves number of domain walls. We provide a common framework to understand and prove known exact towers of scars in these systems, by evaluating the commutator of the Hamiltonian and a ladder operator. In particular we provide a simple proof of the scar towers in the integer-spin 1d AKLT models by studying two-site spin projectors. Through this picture we deduce a family of Hamiltonians that share the scar tower with the AKLT model, and also find common parent Hamiltonians for the AKLT and XY model scars. We also introduce new towers of exact states, organized in a "pyramid" structure, in the spin-1/2 model through successive application of a non-local ladder operator

    Exact eigenstates in the Lesanovsky model, proximity to integrability and the PXP model, and approximate scar states

    Get PDF
    We study a model of Rydberg atoms in a nearest-neighbor Rydberg blockaded regime, introduced by Lesanovsky [Phys. Rev. Lett. 108, 105301 (2012)]. This many-body model (which has one parameter z) has an exactly known gapped liquid ground state, and two exactly known low-lying excitations. We discover two exact low-lying eigenstates. We also discuss behavior of the model at small parameter z and its proximity to an integrable model. Lastly, we discuss connections between the Lesanovsky model at intermediate z and the so-called PXP model. The PXP model describes a recent experiment that observed unusual revivals from a charge-density-wave initial state, which are attributed to a set of many-body “scar states” which do not obey the eigenstate thermalization hypothesis. We discuss the possibility of approximate scar states in the Lesanovsky model and present two approximations for them

    Unified structure for exact towers of scar states in the AKLT and other models

    Get PDF
    Quantum many-body scar states are many-body states with finite energy density in non-integrable models that do not obey the eigenstate thermalization hypothesis. Recent works have revealed "towers" of scar states that are exactly known and are equally spaced in energy, specifically in the AKLT model, the spin-1 XY model, and a spin-1/2 model that conserves number of domain walls. We provide a common framework to understand and prove known exact towers of scars in these systems, by evaluating the commutator of the Hamiltonian and a ladder operator. In particular we provide a simple proof of the scar towers in the integer-spin 1d AKLT models by studying two-site spin projectors. Through this picture we deduce a family of Hamiltonians that share the scar tower with the AKLT model, and also find common parent Hamiltonians for the AKLT and XY model scars. We also introduce new towers of exact states, organized in a "pyramid" structure, in the spin-1/2 model through successive application of a non-local ladder operator

    Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models

    Get PDF
    Quantum many-body scar states are many-body states with finite energy density in non-integrable models that do not obey the eigenstate thermalization hypothesis. Recent works have revealed “towers” of scar states that are exactly known and are equally spaced in energy, specifically in the AKLT and spin-1 XY models, and a spin-1/2 model that conserves the number of domain walls. We provide a common framework to understand and prove known exact towers of scars in these systems, by evaluating the commutator of the Hamiltonian and a ladder operator. In particular, we provide a simple proof of the scar towers in the integer-spin 1D AKLT models by studying two-site spin projectors. Through this picture we deduce a family of Hamiltonians that share the scar tower with the AKLT model, and also find common parent Hamiltonians for the AKLT and XY model scars. We also introduce new towers of exact states, organized in a “pyramid” structure, in the spin-1/2 model through the successive application of a nonlocal ladder operator

    Exact eigenstates in the Lesanovsky model, proximity to integrability and the PXP model, and approximate scar states

    Get PDF
    We study a model of Rydberg atoms in a nearest-neighbor Rydberg blockaded regime, introduced by Lesanovsky [Phys. Rev. Lett. 108, 105301 (2012)]. This many-body model (which has one parameter z) has an exactly known gapped liquid ground state, and two exactly known low-lying excitations. We discover two exact low-lying eigenstates. We also discuss behavior of the model at small parameter z and its proximity to an integrable model. Lastly, we discuss connections between the Lesanovsky model at intermediate z and the so-called PXP model. The PXP model describes a recent experiment that observed unusual revivals from a charge-density-wave initial state, which are attributed to a set of many-body “scar states” which do not obey the eigenstate thermalization hypothesis. We discuss the possibility of approximate scar states in the Lesanovsky model and present two approximations for them

    Structural study on hole-doped superconductors Pr1-xSrxFeAsO

    Full text link
    The structural details in Pr1-xSrxFeAsO (1111) superconducting system are analyzed using data obtained from synchrotron X-ray diffraction and the structural parameters are carefully studied as the system is moving from non-superconducting to hole-doped superconducting with the Sr concentration. Superconductivity emerges when the Sr doping amount reaches 0.221. The linear increase of the lattice constants proves that Sr is successfully introduced into the system and its concentration can accurately be determined by the electron density analyses. The evolution of structural parameters with Sr concentration in Pr1-xSrxFeAsO and their comparison to other similar structural parameters of the related Fe-based superconductors suggest that the interlayer space between the conducting As-Fe-As layer and the insulating Pr-O-Pr layer is important for improving Tc in the hole-doped (1111) superconductors, which seems to be different from electron-doped systems.Comment: 17 pages, 7 figures, 1 tabl

    Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer

    Full text link
    Nanotube patterning may occur naturally upon the spontaneous self-assembly of biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It results in periodically alternating bands of surface properties, ranging from relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single Chain Mean Field (SCMF) theory has been used to estimate the free energy of systems in which a surface patterned nanotube penetrates a phospholipid bilayer. In contrast to un-patterned nanotubes with uniform surface properties, certain patterned nanotubes have been identified that display a relatively low and approximately constant system free energy (10 kT) as the nanotube traverses through the bilayer. These observations support the hypothesis that the spontaneous self-assembly of bio-molecules on the surface of SWNTs may facilitate nanotube transduction through cell membranes.Comment: Published in ACS Nano http://pubs.acs.org/doi/abs/10.1021/nn102763
    • …
    corecore