286 research outputs found

    The Research of Simulation on Eddy Current Separation Process Based on MATLAB and COMSOL

    Get PDF
    AbstractThe separation process of eddy current separator is effected by the structure parameters of magnetic roller, the working parameters of the separator and some parameters of the scrap metal, such as the material, the shape, the size and so on. This is a complex process of electric field and magnetic field coupling. During this process, the sorting function of separator is powered by the existence of the eddy current power in waste particles, and the separation effect is directly determined by the flying distance of the scrap metal in the separation process. This paper armed for studying the eddy current power and the flying distance of the waste particles in separation to realize the simulation of the separation process. The eddy current force was obtained by the finite element analysis of the magnetic roller based on COMSOL, and the flying distance was got by the joint simulation of COMSOL and MATLAB

    On the shock wave boundary layer interaction in slightly-rarefied gas

    Full text link
    The shock wave and boundary layer interaction (SWBLI) plays an important role in the design of hypersonic vehicles. However, discrepancies between the numerical results of high-temperature gas dynamics and experiment data have not been fully addressed. It is believed that the rarefaction effects are important in SWBLI, but the systematic analysis of the temperature-jump boundary conditions and the role of translational/rotational/vibrational heat conductivities are lacking. In this paper, we derive the three-temperature Navier-Stokes-Fourier (NSF) equations from the gas kinetic theory, with special attention paid to the components of heat conductivity. With proper temperature-jump boundary conditions, we simulate the SWBLI in the double cone experiment. Our numerical results show that, when the three heat conductivities are properly recovered, the NSF equations can capture the position and peak value of the surface heat flux, in both low- and high-enthalpy inflow conditions. Moreover, the separation bubble induced by the separated shock and the reattachment point induced by impact between transmitted shock and boundary layer are found to agree with the experimental measurement

    Comparison of retinal thickness measurements of normal eyes between topcon algorithm and a graph based algorithm

    Get PDF
    To assess the agreement between Topcon built-in algorithm and our developed graph based algorithm, the retinal thickness of 9-sectors on an Early Treatment of Diabetic Retinopathy Study(ETDRS) chart measurements for normal subjects was compared. A total of fifty eyes were enrolled in this study. The overall and sectoral thickness on ETDRS chart were calculated using Topcon built-in algorithm and our developed three-dimensional graph based algorithm. Correlation analysis and agreement analysis were performed between the commercial algorithm and our algorithm. A high degree of correlation was found between the results obtained from the two methods was from 0.856 to 0.960. It’s showed that our developed graph based algorithm can provide excellent performance similar to Topcon algorithm

    An automated framework of inner segment/outer segment defect detection for retinal SD-OCT images

    Get PDF
    The integrity of inner segment/outer segment (IS/OS) has high correlation with lower visual acuity in patients suffering from blunt trauma. An automated 3D IS/OS defect detection method based on the SD-OCT images was proposed. First, 11 surfaces were automatically segmented using the multiscale 3D graph-search approach. Second, the sub-volumes between surface 7 and 8 containing IS/OS region around the fovea (diameter of mm) were extracted and flattened based on the segmented retinal pigment epithelium layer. Third, 5 kinds of texture based features were extracted for each voxel. A KNN classifier was trained and each voxel was classified as disrupted or nondisrupted and the responding defect volume was calculated. The proposed method was trained and tested on 9 eyes from 9 trauma subjects using the leave-one-out cross validation method. The preliminary results demonstrated the feasibility and efficiency of the proposed method

    Cdc6 contributes to abrogating the G1 checkpoint under hypoxic conditions in HPV E7 expressing cells

    Get PDF
    The human papillomavirus (HPV) plays a central role in cervical carcinogenesis and its oncogene E7 is essential in this process. We showed here that E7 abrogated the G1 cell cycle checkpoint under hypoxia and analyzed key cell cycle related proteins for their potential role in this process. To further explore the mechanism by which E7 bypasses hypoxia-induced G1 arrest, we applied a proteomic approach and used mass spectrometry to search for proteins that are differentially expressed in E7 expressing cells under hypoxia. Among differentially expressed proteins identified, Cdc6 is a DNA replication initiation factor and exhibits oncogenic activities when overexpressed. We have recently demonstrated that Cdc6 was required for E7-induced re-replication. Significantly, here we showed that Cdc6 played a role in E7-mediated G1 checkpoint abrogation under hypoxic condition, and the function could possibly be independent from its role in DNA replication initiation. This study uncovered a new function of Cdc6 in regulating cell cycle progression and has important implications in HPV-associated cancers

    Modeling and dynamic analysis of spiral bevel gear coupled system of intermediate and tail gearboxes in a helicopter.

    Get PDF
    The coupled dynamic model of the intermediate and tail gearboxes’ spiral bevel gear-oblique tail shaft-laminated membrane coupling was established by employing the hybrid modeling method of finite element and lumped mass. Among them, the dynamic equation of the shaft was constructed by Timoshenko beam; spiral bevel gears were derived theoretically by the lumped-mass method, where the effects of time-varying meshing stiffness, transmission error, external imbalance excitation and the like were considered simultaneously; laminated membrane coupling was simplified to a lumped parameter model, in which the stiffness was obtained by the finite element simulation and experiment. On this basis, the laminated membrane coupling and effects of several important parameters, including the unbalance value, tail rotor excitation, oblique tail shaft’s length and transmission error amplitude, on the system’s dynamic characteristics were discussed. The results showed that the influences of laminated membrane coupling and transmission error amplitude on the coupled system’s vibration response were prominent, which should be taken into consideration in the dynamic model. Due to the bending-torsional coupled effect, the lateral vibration caused by gear eccentricity would enlarge the oblique tail shaft’s torsional vibration; similarly, the tail rotor’s torsional excitation also varies the lateral vibration of the oblique tail shaft. The coupled effect between the eccentricity of gear pairs mainly hit the torsional vibration. Also, as the oblique tail shaft’s length increased, the torsional vibration of the oblique tail shaft tended to diminish while the axis orbit became larger. The research provides theoretical support for the design of the helicopter tail transmission system

    CIP2A facilitates the G1/S cell cycle transition via B-Myb in human papillomavirus 16 oncoprotein E6-expressing cells

    Get PDF
    Infection with high-risk human papillomaviruses (HR-HPVs, including HPV-16, HPV-18, HPV-31) plays a central aetiologic role in the development of cervical carcinoma. The transforming properties of HR-HPVs mainly reside in viral oncoproteins E6 and E7. E6 protein degrades the tumour suppressor p53 and abrogates cell cycle checkpoints. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that is involved in the carcinogenesis of many human malignancies. Our previous data showed that CIP2A was overexpressed in cervical cancer. However, the regulation of CIP2A by HPV-16E6 remains to be elucidated. In this study, we demonstrated that HPV-16E6 significantly up-regulated CIP2A mRNA and protein expression in a p53-degradation-dependent manner. Knockdown of CIP2A by siRNA inhibited viability and DNA synthesis and caused G1 cell cycle arrest of 16E6-expressing cells. Knockdown of CIP2A resulted in a significant reduction in the expression of cyclin-dependent kinase 1 (Cdk1) and Cdk2. Although CIP2A has been reported to stabilize c-Myc by inhibiting PP2A-mediated dephosphorylation of c-Myc, we have presented evidence that the regulation of Cdk1 and Cdk2 by CIP2A is dependent on transcription factor B-Myb rather than c-Myc. Taken together, our study reveals the role of CIP2A in abrogating the G1 checkpoint in HPV-16E6-expressing cells and helps in understanding the molecular basis of HPV-induced oncogenesis
    • …
    corecore