579 research outputs found
Reinforced concrete beams strengthened in flexure with near-surface mounted (NSM) CFRP strips: Current status and research needs
The near-surface mounted (NSM) FRP strengthening technique has attracted worldwide attention as an effective alternative to the externally bonded (EB) FRP strengthening technique. In the NSM FRP strengthening method, grooves are first cut in the concrete cover of a concrete member for the FRP reinforcement to be inserted and embedded using an adhesive. The NSM FRP method has many advantages over the EB FRP method, including a higher bonding efficiency and a better protection of the FRP reinforcement. Existing experimental studies have shown that FRP strips owned a better bond efficiency compared with other section shapes (e.g. round bars and square bars), due to the fact that they had a larger perimeter-to-cross-sectional area ratio. This paper presents a state-of-the-art review, particularly on the flexural strengthening of RC beams with NSM CFRP strips. The observed failure modes in laboratory experiments of such FRP-strengthened RC beams are classified and the existing strength models are examined along with the failure mechanisms behind. The main knowledge gaps to be bridged in future studies are also identified. This review partially formed the basis of the development of design provisions on the NSM strengthening technique in the relevant Hong Kong design guideline
Accelerated degradation modeling considering long-range dependence and unit-to-unit variability
Accelerated degradation testing (ADT) is an effective way to evaluate the
reliability and lifetime of highly reliable products. Existing studies have
shown that the degradation processes of some products are non-Markovian with
long-range dependence due to the interaction with environments. Besides, the
degradation processes of products from the same population generally vary from
each other due to various uncertainties. These two aspects bring great
difficulty for ADT modeling. In this paper, we propose an improved ADT model
considering both long-range dependence and unit-to-unit variability. To be
specific, fractional Brownian motion (FBM) is utilized to capture the
long-range dependence in the degradation process. The unit-to-unit variability
among multiple products is captured by a random variable in the degradation
rate function. To ensure the accuracy of the parameter estimations, a novel
statistical inference method based on expectation maximization (EM) algorithm
is proposed, in which the maximization of the overall likelihood function is
achieved. The effectiveness of the proposed method is fully verified by a
simulation case and a microwave case. The results show that the proposed model
is more suitable for ADT modeling and analysis than existing ADT models
Contrasting responses of soil microbial biomass and extracellular enzyme activity along an elevation gradient on the eastern Qinghai-Tibetan Plateau
Soil microbial community composition and extracellular enzyme activity are two main drivers of biogeochemical cycling. Knowledge about their elevational patterns is of great importance for predicting ecosystem functioning in response to climate change. Nevertheless, there is no consensus on how soil microbial community composition and extracellular enzyme activity vary with elevation, and little is known about their elevational variations on the eastern Qinghai-Tibetan Plateau, a region sensitive to global change. We therefore investigated the soil microbial community composition using phospholipid fatty acids (PLFAs) analysis, and enzyme activities at 2,820 m (coniferous and broadleaved mixed forest), 3,160 m (dark coniferous forest), 3,420 m (alpine dwarf forest), and 4,280 m (alpine shrubland) above sea level. Our results showed that soil microbial community composition and extracellular enzyme activities changed significantly along the elevational gradient. Biomass of total microbes, bacteria, and arbuscular mycorrhizal fungi at the highest elevation were the significantly lowest among the four elevations. In contrast, extracellular enzyme activities involved in carbon (C)-, nitrogen (N)-, and phosphorus (P)- acquiring exhibited the maximum values at the highest elevation. Total nutrients and available nutrients, especially P availability jointly explained the elevational pattern of soil microbial community, while the elevational variation of extracellular enzyme activities was dependent on total nutrients. Microbial metabolism was mainly C- and P-limited with an increasing C limitation but a decreasing P limitation along the elevational gradient, which was related significantly to mean annual temperature and total P. These results indicated a vital role of soil P in driving the elevational patterns of soil microbial community and metabolism. Overall, the study highlighted the contrasting responses of soil microbial biomass and extracellular enzyme activities to elevation, possibly suggesting the differences in adaption strategy between population growth and resource acquisition responding to elevation. The results provide essential information for understanding and predicting the response of belowground community and function to climate change on the eastern Qinghai-Tibetan Plateau
Measurement Induced Quantum Coherence Recovery
We show that measurement can recover the quantum coherence of a qubit in a
non-Markovian environment. The experimental demonstration in an optical system
is provided by comparing the visibilities (and fidelities) of the final states
with and without measurement. This method can be extended to other two-level
quantum systems and entangled states in a non-Markovian evolution environment.
It may also be used to implement other quantum information processing.Comment: 9 pages, 5 figure
Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury
<p>Abstract</p> <p>Background</p> <p>Traumatic spinal cord injury (SCI) forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the longer survival time points after SCI remains to be elucidated.</p> <p>Methods</p> <p>Through two-dimensional electrophoresis (2DE)-based proteome analysis and western blotting, we examined the differential expression of the soluble proteins isolated from the lesion center (LC) at day 1 (acute) and day 14 (subacute) after a severe contusive injury to the thoracic spinal cord at segment 10. In situ apoptotic analysis was used to examine cell apoptosis in injured spinal cord after adenoviral gene transfer of antioxidant enzymes. In addition, administration of chondroitinase ABC (chABC) was performed to analyze hindlimb locomotor recovery in rats with SCI using Basso, Beattie and Bresnahan (BBB) locomotor rating scale.</p> <p>Results</p> <p>Our results showed a decline in catalase (CAT) and Mn-superoxide dismutase (MnSOD) found at day 14 after SCI. Accordingly, gene transfer of SOD was introduced in the injured spinal cord and found to attenuate cell apoptosis. Galectin-3, β-actin, actin regulatory protein (CAPG), and F-actin-capping protein subunit β (CAPZB) at day 14 were increased when compared to that detected at day 1 after SCI or in sham-operated control. Indeed, the accumulation of β-actin<sup>+ </sup>immune cells was observed in the LC at day 14 post SCI, while most of reactive astrocytes were surrounding the lesion center. In addition, chondroitin sulfate proteoglycans (CSPG)-related proteins with 40-kDa was detected in the LC at day 3-14 post SCI. Delayed treatment with chondroitinase ABC (chABC) at day 3 post SCI improved the hindlimb locomotion in SCI rats.</p> <p>Conclusions</p> <p>Our findings demonstrate that the differential expression in proteins related to signal transduction, oxidoreduction and stress contribute to extensive inflammation, causing time-dependent spread of tissue damage after severe SCI. The interventions by supplement of anti-oxidant enzymes right after SCI or delayed administration with chABC can facilitate spinal neural cell survival and tissue repair.</p
Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury
<p>Abstract</p> <p>Background</p> <p>Traumatic spinal cord injury (SCI) forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the longer survival time points after SCI remains to be elucidated.</p> <p>Methods</p> <p>Through two-dimensional electrophoresis (2DE)-based proteome analysis and western blotting, we examined the differential expression of the soluble proteins isolated from the lesion center (LC) at day 1 (acute) and day 14 (subacute) after a severe contusive injury to the thoracic spinal cord at segment 10. In situ apoptotic analysis was used to examine cell apoptosis in injured spinal cord after adenoviral gene transfer of antioxidant enzymes. In addition, administration of chondroitinase ABC (chABC) was performed to analyze hindlimb locomotor recovery in rats with SCI using Basso, Beattie and Bresnahan (BBB) locomotor rating scale.</p> <p>Results</p> <p>Our results showed a decline in catalase (CAT) and Mn-superoxide dismutase (MnSOD) found at day 14 after SCI. Accordingly, gene transfer of SOD was introduced in the injured spinal cord and found to attenuate cell apoptosis. Galectin-3, β-actin, actin regulatory protein (CAPG), and F-actin-capping protein subunit β (CAPZB) at day 14 were increased when compared to that detected at day 1 after SCI or in sham-operated control. Indeed, the accumulation of β-actin<sup>+ </sup>immune cells was observed in the LC at day 14 post SCI, while most of reactive astrocytes were surrounding the lesion center. In addition, chondroitin sulfate proteoglycans (CSPG)-related proteins with 40-kDa was detected in the LC at day 3-14 post SCI. Delayed treatment with chondroitinase ABC (chABC) at day 3 post SCI improved the hindlimb locomotion in SCI rats.</p> <p>Conclusions</p> <p>Our findings demonstrate that the differential expression in proteins related to signal transduction, oxidoreduction and stress contribute to extensive inflammation, causing time-dependent spread of tissue damage after severe SCI. The interventions by supplement of anti-oxidant enzymes right after SCI or delayed administration with chABC can facilitate spinal neural cell survival and tissue repair.</p
- …