427 research outputs found
Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model
We investigate the primordial trispectra of the general multifield DBI
inflationary model. In contrast with the single field model, the entropic modes
can source the curvature perturbations on the super horizon scales, so we
calculate the contributions from the interaction of four entropic modes
mediating one adiabatic mode to the trispectra, at the large transfer limit
(). We obtained the general form of the 4-point correlation
functions, plotted the shape diagrams in two specific momenta configurations,
"equilateral configuration" and "specialized configuration". Our figures showed
that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA
Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum
The methods of effective field theory are used to study generic theories of
inflation with a single inflaton field and to perform a general analysis of the
associated non-Gaussianities. We investigate the amplitudes and shapes of the
various generic three-point correlators, the bispectra, which may be generated
by different classes of single-field inflationary models. Besides the
well-known results for the DBI-like models and the ghost inflationary theories,
we point out that curvature-related interactions may give rise to large
non-Gaussianities in the form of bispectra characterized by a flat shape which,
quite interestingly, is independently produced by several interaction terms. In
a subsequent work, we will perform a similar general analysis for the
non-Gaussianities generated by the generic four-point correlator, the
trispectrum.Comment: Version matching the one published in JCAP, 2 typos fixed, references
added. 30 pages, 20 figure
The inflationary bispectrum with curved field-space
We compute the covariant three-point function near horizon-crossing for a
system of slowly-rolling scalar fields during an inflationary epoch, allowing
for an arbitrary field-space metric. We show explicitly how to compute its
subsequent evolution using a covariantized version of the separate universe or
"delta-N" expansion, which must be augmented by terms measuring curvature of
the field-space manifold, and give the nonlinear gauge transformation to the
comoving curvature perturbation. Nonlinearities induced by the field-space
curvature terms are a new and potentially significant source of
non-Gaussianity. We show how inflationary models with non-minimal coupling to
the spacetime Ricci scalar can be accommodated within this framework. This
yields a simple toolkit allowing the bispectrum to be computed in models with
non-negligible field-space curvature.Comment: 22 pages, plus appendix and reference
Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Trispectrum
We perform the analysis of the trispectrum of curvature perturbations
generated by the interactions characterizing a general theory of single-field
inflation obtained by effective field theory methods. We find that
curvature-generated interaction terms, which can in general give an important
contribution to the amplitude of the four-point function, show some new
distinctive features in the form of their trispectrum shape-function. These
interesting interactions are invariant under some recently proposed symmetries
of the general theory and, as shown explicitly, do allow for a large value of
the trispectrum.Comment: 29 pages, 13 figure
The δN formula is the dynamical renormalization group
We derive the 'separate universe' method for the inflationary bispectrum,
beginning directly from a field-theory calculation. We work to tree-level in
quantum effects but to all orders in the slow-roll expansion, with masses
accommodated perturbatively. Our method provides a systematic basis to account
for novel sources of time-dependence in inflationary correlation functions, and
has immediate applications. First, we use our result to obtain the correct
matching prescription between the 'quantum' and 'classical' parts of the
separate universe computation. Second, we elaborate on the application of this
method in situations where its validity is not clear. As a by-product of our
calculation we give the leading slow-roll corrections to the three-point
function of field fluctuations on spatially flat hypersurfaces in a canonical,
multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2:
typographical typos fixed, minor changes to the main text and abstract,
reference added; matches version published in JCA
Large slow-roll corrections to the bispectrum of noncanonical inflation
Nongaussian statistics are a powerful discriminant between inflationary
models, particularly those with noncanonical kinetic terms. Focusing on
theories where the Lagrangian is an arbitrary Lorentz-invariant function of a
scalar field and its first derivatives, we review and extend the calculation of
the observable three-point function. We compute the "next-order" slow-roll
corrections to the bispectrum in closed form, and obtain quantitative estimates
of their magnitude in DBI and power-law k-inflation. In the DBI case our
results enable us to estimate corrections from the shape of the potential and
the warp factor: these can be of order several tens of percent. We track the
possible sources of large logarithms which can spoil ordinary perturbation
theory, and use them to obtain a general formula for the scale dependence of
the bispectrum. Our result satisfies the next-order version of Maldacena's
consistency condition and an equivalent consistency condition for the scale
dependence. We identify a new bispectrum shape available at next-order, which
is similar to a shape encountered in Galileon models. If fNL is sufficiently
large this shape may be independently detectable.Comment: v1: 37 pages, plus tables, figures and appendices. v2: supersedes
version published in JCAP; some clarifications and more detailed comparison
with earlier literature. All results unchanged. v3:improvements to some
plots; text unchange
Non-Gaussianity from violation of slow-roll in multiple inflation
Multiple inflation is a model based on N=1 supergravity wherein there are
sudden changes in the mass of the inflaton because it couples to 'flat
direction' scalar fields which undergo symmetry breaking phase transitions as
the universe cools. The resulting brief violations of slow-roll evolution
generate a non-gaussian signal which we find to be oscillatory and yielding
f_NL ~ 5-20. This is potentially detectable by e.g. Planck but would require
new bispectrum estimators to do so. We also derive a model-independent result
relating the period of oscillations of a phase transition during inflation to
the period of oscillations in the primordial curvature perturbation generated
by the inflaton.Comment: 21 pages, 6 figures; Clarifying comments and references added;
Accepted for publication in JCA
Infrared effects in inflationary correlation functions
In this article, I briefly review the status of infrared effects which occur
when using inflationary models to calculate initial conditions for a subsequent
hot, dense plasma phase. Three types of divergence have been identified in the
literature: secular, "time-dependent" logarithms, which grow with time spent
outside the horizon; "box-cutoff" logarithms, which encode a dependence on the
infrared cutoff when calculating in a finite-sized box; and "quantum"
logarithms, which depend on the ratio of a scale characterizing new physics to
the scale of whatever process is under consideration, and whose interpretation
is the same as conventional field theory. I review the calculations in which
these divergences appear, and discuss the methods which have been developed to
deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on
nonlinear and nongaussian perturbation theory. Some improvements compared to
version which will appear in CQG, especially in Sec. 2.3. 30 pages +
references
Non-Gaussianity from Lifshitz Scalar
A Lifshitz scalar with the dynamical critical exponent z = 3 obtains
scale-invariant, super-horizon field fluctuations without the need of an
inflationary era. Since this mechanism is due to the special scaling of the
Lifshitz scalar and persists in the presence of unsuppressed self-couplings,
the resulting fluctuation spectrum can deviate from a Gaussian distribution. We
study the non-Gaussian nature of the Lifshitz scalar's intrinsic field
fluctuations, and show that primordial curvature perturbations sourced from
such field fluctuations can have large non-Gaussianity of order f_NL = O(100),
which will be detected by upcoming CMB observations. We compute the bispectrum
and trispectrum of the fluctuations, and discuss their configurations in
momentum space. In particular, the bispectrum is found to take various shapes,
including the local, equilateral, and orthogonal shapes. Intriguingly, all
integrals in the in-in formalism can be performed analytically.Comment: 17 pages, 15 figures, v2: published in JCA
- …