86,717 research outputs found
Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory
Five-dimensional collective Hamiltonian based on the covariant density
functional theory has been applied to study the the low-lying states of
even-even Gd isotopes. The shape evolution from Gd to
Gd is presented. The experimental energy spectra and intraband
transition probabilities for the Gd isotopes are reproduced by the
present calculations. The relative ratios in present calculations are
also compared with the available interacting boson model results and
experimental data. It is found that the occupations of neutron
orbital result in the well-deformed prolate shape, and are essential for Gd
isotopes.Comment: 11pages, 10figure
The role of components in the N(1440) resonance
The role of 5-quark components in the pion and electromagnetic decays and
transition form factors of the N(1440) is explored. The
components, where the 4-quark subsystem has the flavor-spin symmetries
and , which are expected to have
the lowest energy of all configurations, are considered in detail
with a nonrelativistic quark model. The matrix elements between the 5-quark
components of the N(1440) and the nucleon, , play a
minor role in these decays, while the transition matrix elements and that involve quark antiquark annihilation are very
significant. Both for the electromagnetic and strong decay the change from the
valence quark model value is dominated by the confinement triggered
annihilation transitions. In the case of pion decay the calculated decay width
is enhanced substantially both by the direct and also by the
confinement triggered transitions. Agreement with the
empirical value for the pion decay width may be reached with a 30%
component in the N(1440).Comment: 23 pages revte
Five-quark components in decay
Five-quark components in the are shown to
contribute significantly to decay through
quark-antiquark annihilation transitions. These involve the overlap between the
and components and may be triggered by the confining
interaction between the quarks. With a 10% admixture of five-quark
components in the the decay width can be larger by factors 2 - 3
over that calculated in the quark model with 3 valence quarks, depending on the
details of the confining interaction. The effect of transitions between the
components themselves on the calculated decay width is however
small. The large contribution of the quark-antiquark annihilation transitions
thus may compensate the underprediction of the width of the by
the valence quark model, once the contains
components with 10% probability.Comment: accepted versio
- …