930 research outputs found

    Genetic Algorithm Assisted Error Probability Optimisation for Beamforming

    No full text
    A novel Genetic Algorithm (GA) assisted direct error probability optimisation technique is proposed for adaptive beamforming, which reduces the achievable error probability by nearly two orders of magnitude at a signal-to-noise ratio of 10dB in the investigated scenario in comparison to the minimum mean-squared error beamforming benchmarker

    Smart Beamforming for Wireless Communications: A Novel Minimum Bit Error Rate Approach

    No full text
    Spatial processing with adaptive antenna array has shown real promise for substantial capacity enhancement in wireless communications. We propose a novel beamforming technique based on the minimum bit error rate (MBER) criterion. It is demonstrated that the MBER approach utilizes the system resource, the antenna elements, more intelligently than the standard minimum mean square error (MMSE) approach. Consequently, the MBER beamforming can provide significant performance gain in terms of smaller bit error rate (BER) over the MMSE beamforming

    Adaptive Minimum Bit Error Rate Beamforming Assisted Receiver for QPSK Wireless Communication

    No full text
    This paper considers interference limited communication systems where the desired user and interfering users are symbol-synchronized. A novel adaptive beamforming technique is proposed for quadrature phase shift keying (QPSK) receiver based directly on minimizing the bit error rate. It is demonstrated that the proposed minimum bit error rate (MBER) approach utilizes the system resource (antenna array elements) more intelligently, than the standard minimum mean square error (MMSE) approach. Consequently, an MBER beamforming assisted receiver is capable of providing significant performance gains in terms of a reduced bit error rate over an MMSE beamforming one. A block-data based adaptive implementation of the theoretical MBER beamforming solution is developed based on the classical Parzen window estimate of probability density function. Furthermore, a sample-by-sample adaptive implementation is also considered, and a stochastic gradient algorithm, called the least bit error rate, is derived for the beamforming assisted QPSK receiver

    Genetic algorithm assisted error probability optimisation for beamforming

    Full text link

    Voronoi-Delaunay analysis of normal modes in a simple model glass

    Full text link
    We combine a conventional harmonic analysis of vibrations in a one-atomic model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the structure. ``Structure potentials'' (tetragonality, sphericity or perfectness) are introduced to describe the shape of the local atomic configurations (Delaunay simplices) as function of the atomic coordinates. Apart from the highest and lowest frequencies the amplitude weighted ``structure potential'' varies only little with frequency. The movement of atoms in soft modes causes transitions between different ``perfect'' realizations of local structure. As for the potential energy a dynamic matrix can be defined for the ``structure potential''. Its expectation value with respect to the vibrational modes increases nearly linearly with frequency and shows a clear indication of the boson peak. The structure eigenvectors of this dynamical matrix are strongly correlated to the vibrational ones. Four subgroups of modes can be distinguished

    Nanoelectromechanics of Piezoresponse Force Microscopy

    Full text link
    To achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, analytical representations for tip-induced electroelastic fields inside the material are derived for the cases of weak and strong indentation. In the weak indentation case, electrostatic field distribution is calculated using image charge model. In the strong indentation case, the solution of the coupled electroelastic problem for piezoelectric indentation is used to obtain the electric field and strain distribution in the ferroelectric material. This establishes a complete continuum mechanics description of the PFM contact mechanics and imaging mechanism. The electroelastic field distribution allows signal generation volume in PFM to be determined. These rigorous solutions are compared with the electrostatic point charge and sphere-plane models, and the applicability limits for asymptotic point charge and point force models are established. The implications of these results for ferroelectric polarization switching processes are analyzed.Comment: 81 pages, 19 figures, to be published in Phys. Rev.

    Diffractive photon dissociation in the saturation regime from the Good and Walker picture

    Full text link
    Combining the QCD dipole model with the Good and Walker picture, we formulate diffractive dissociation of a photon of virtuality Q^2 off a hadronic target, in the kinematical regime in which Q is close to the saturation scale and much smaller than the invariant mass of the diffracted system. We show how the obtained formula compares to the HERA data and discuss what can be learnt from such a phenomenology. In particular, we argue that diffractive observables in these kinematics provide useful pieces of information on the saturation regime of QCD.Comment: 17 pages, 7 figures, revte

    Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East : vertical peak ground acceleration and spectral acceleration

    Get PDF
    This article presents equations for the estimation of vertical strong ground motions caused by shallow crustal earthquakes with magnitudes M w 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is similar to that observed for horizontal motions and is not large and corresponds to factors between 0.7 (normal and odd) and 1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.1 over those on rock sites

    Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots

    Full text link
    Optically controlled coherent dynamics of charge (excitonic) degrees of freedom in a semiconductor quantum dot under the influence of lattice dynamics (phonons) is discussed theoretically. We show that the dynamics of the lattice response in the strongly non-linear regime is governed by a semiclassical resonance between the phonon modes and the optically driven dynamics. We stress on the importance of the stability of intermediate states for the truly coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl

    Differential Regularization of Topologically Massive Yang-Mills Theory and Chern-Simons Theory

    Full text link
    We apply differential renormalization method to the study of three-dimensional topologically massive Yang-Mills and Chern-Simons theories. The method is especially suitable for such theories as it avoids the need for dimensional continuation of three-dimensional antisymmetric tensor and the Feynman rules for three-dimensional theories in coordinate space are relatively simple. The calculus involved is still lengthy but not as difficult as other existing methods of calculation. We compute one-loop propagators and vertices and derive the one-loop local effective action for topologically massive Yang-Mills theory. We then consider Chern-Simons field theory as the large mass limit of topologically massive Yang-Mills theory and show that this leads to the famous shift in the parameter kk. Some useful formulas for the calculus of differential renormalization of three-dimensional field theories are given in an Appendix.Comment: 25 pages, 4 figures. Several typewritten errors and inappropriate arguments are corrected, especially the correct adresses of authors are give
    • 

    corecore