3,615 research outputs found
Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: direct numerical simulations and Lagrangian averaged modeling
We present direct numerical simulations and Lagrangian averaged (also known
as alpha-model) simulations of forced and free decaying magnetohydrodynamic
turbulence in two dimensions. The statistics of sign cancellations of the
current at small scales is studied using both the cancellation exponent and the
fractal dimension of the structures. The alpha-model is found to have the same
scaling behavior between positive and negative contributions as the direct
numerical simulations. The alpha-model is also able to reproduce the time
evolution of these quantities in free decaying turbulence. At large Reynolds
numbers, an independence of the cancellation exponent with the Reynolds numbers
is observed.Comment: Finite size box effects have been taken into account in the
definition of the partition function. This has resulted in a more clear
scaling in all figures. Several points are clarified in the tex
Energy efficient cooperative coalition selection in cluster-based capillary networks for CMIMO IoT systems
The Cooperative Multiple-input-multiple-output (CMIMO) scheme has been suggested to extend the lifetime of cluster heads (CHs) in cluster-based capillary networks in Internet of Things (IoT) systems. However, the CMIMO scheme introduces extra energy overhead to cooperative devices and further reduces the lifetime of these devices. In this paper, we first articulate the problem of cooperative coalitionâs selection for CMIMO scheme to extend the average battery capacity among the whole network, and then propose to apply the quantum-inspired particle swarm optimization (QPSO) to select the optimum cooperative coalitions of each hop in the routing path. Simulation results proved that the proposed QPSO-based cooperative coalitionâs selection scheme could select the optimum cooperative sender and receiver devices in every hop dynamically and outperform the virtual MIMO scheme with a fixed number of cooperative devices
Gamma-Delta (gammadelta) (γΎ) T-cell Lymphoma - Another Case Unclassifiable by World Health Organization Classification: a Case Report
BACKGROUND: We present a case of gamma-delta T-cell lymphoma that does not fit the current World Health Organization classifications. CASE PRESENTATION: A 74-year-old Caribbean-American woman presented with lymphocytosis, pruritus, and non-drenching night sweats. Bone marrow and peripheral blood analyses both confirmed the diagnosis of gamma-delta T-cell lymphoma. An axillary lymph node biopsy was negative for lymphoma. Clinically absent hepatosplenomegaly and skin lesions with biopsy-proven gamma-delta T-cell lymphoma suggest that she is unclassifiable within the current classification system. CONCLUSIONS: We believe this is a case of not otherwise specified gamma-delta T-cell lymphoma. Accumulation of these rare not otherwise specified cases will be important for future classification which further defines the biology of this disease
PhragmĂ©nâLindelöf Principles for Generalized Analytic Functions on Unbounded Domains
We prove versions of the PhragmĂ©nâLindelöf strong maximum principle for generalized analytic functions defined on unbounded domains. A version of Hadamardâs three-lines theorem is also derived
Experimental Upper Bound on Superradiance Emission from Mn12 Acetate
We used a Josephson junction as a radiation detector to look for evidence of
the emission of electromagnetic radiation during magnetization avalanches in a
crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at
several magnetic fields in the temperature range from 1.8 to 2.6 K with
durations of the order of 1 ms. Although a recent study shows evidence of
electromagnetic radiation bursts during these avalanches [J. Tejada, et al.,
Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any
significant radiation at well-defined frequencies. A control experiment with
external radiation pulses allows us to determine that the energy released as
radiation during an avalanche is less than 1 part in 10^4 of the total energy
released. In addition, our avalanche data indicates that the magnetization
reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure
Microscopic Delineation of Medulloblastoma Margins in a Transgenic Mouse Model Using a Topically Applied VEGFR-1 Probe
AbstractThe unambiguous demarcation of tumor margins is critical at the final stages in the surgical treatment of brain tumors because patient outcomes have been shown to correlate with the extent of resection. Real-time high-resolution imaging with the aid of a tumor-targeting fluorescent contrast agent has the potential to enable intraoperative differentiation of tumor versus normal tissues with accuracy approaching the current gold standard of histopathology. In this study, a monoclonal antibody targeting the vascular endothelial growth factor receptor 1 (VEGFR-1) was conjugated to fluorophores and evaluated as a tumor contrast agent in a transgenic mouse model of medulloblastoma. The probe was administered topically, and its efficacy as an imaging agent was evaluated in vitro using flow cytometry, as well as ex vivo on fixed and fresh tissues through immunohistochemistry and dual-axis confocal microscopy, respectively. Results show a preferential binding to tumor versus normal tissue, suggesting that a topically applied VEGFR-1 probe can potentially be used with real-time intraoperative optical sectioning microscopy to guide brain tumor resections
Ectopy on a single 12âlead ECG, incident cardiac myopathy, and death in the community
BackgroundAtrial fibrillation and heart failure are 2 of the most common diseases, yet ready means to identify individuals at risk are lacking. The 12-lead ECG is one of the most accessible tests in medicine. Our objective was to determine whether a premature atrial contraction observed on a standard 12-lead ECG would predict atrial fibrillation and mortality and whether a premature ventricular contraction would predict heart failure and mortality.Methods and resultsWe utilized the CHS (Cardiovascular Health) Study, which followed 5577 participants for a median of 12 years, as the primary cohort. The ARIC (Atherosclerosis Risk in Communities Study), the replication cohort, captured data from 15 792 participants over a median of 22 years. In the CHS, multivariable analyses revealed that a baseline 12-lead ECG premature atrial contraction predicted a 60% increased risk of atrial fibrillation (hazard ratio, 1.6; 95% CI, 1.3-2.0; P<0.001) and a premature ventricular contraction predicted a 30% increased risk of heart failure (hazard ratio, 1.3; 95% CI, 1.0-1.6; P=0.021). In the negative control analyses, neither predicted incident myocardial infarction. A premature atrial contraction was associated with a 30% increased risk of death (hazard ratio, 1.3; 95% CI, 1.1-1.5; P=0.008) and a premature ventricular contraction was associated with a 20% increased risk of death (hazard ratio, 1.2; 95% CI, 1.0-1.3; P=0.044). Similarly statistically significant results for each analysis were also observed in ARIC.ConclusionsBased on a single standard ECG, a premature atrial contraction predicted incident atrial fibrillation and death and a premature ventricular contraction predicted incident heart failure and death, suggesting that this commonly used test may predict future disease
Morphing Ensemble Kalman Filters
A new type of ensemble filter is proposed, which combines an ensemble Kalman
filter (EnKF) with the ideas of morphing and registration from image
processing. This results in filters suitable for nonlinear problems whose
solutions exhibit moving coherent features, such as thin interfaces in wildfire
modeling. The ensemble members are represented as the composition of one common
state with a spatial transformation, called registration mapping, plus a
residual. A fully automatic registration method is used that requires only
gridded data, so the features in the model state do not need to be identified
by the user. The morphing EnKF operates on a transformed state consisting of
the registration mapping and the residual. Essentially, the morphing EnKF uses
intermediate states obtained by morphing instead of linear combinations of the
states.Comment: 17 pages, 7 figures. Added DDDAS references to the introductio
Targeted Cyclo[8]pyrrole-Based NIR-II Photoacoustic Tomography Probe for Suppression of Orthotopic Pancreatic Tumor Growth and Intra-abdominal Metastases
Pancreatic cancer is highly lethal. New diagnostic and treatment modalities are desperately needed. We report here that an expanded porphyrin, cyclo[8]pyrrole (CP), with a high extinction coefficient (89.16 L/g·cm) within the second near-infrared window (NIR-II), may be formulated with an αvÎČ3-specific targeting peptide, cyclic-Arg-Gly-Asp (cRGD), to form cRGD-CP nanoparticles (cRGD-CPNPs) with promising NIR-II photothermal (PT) therapeutic and photoacoustic (PA) imaging properties. Studies with a ring-array PA tomography system, coupled with analysis of control nanoparticles lacking a targeting element (CPNPs), revealed that cRGD conjugation promoted the delivery of the NPs through abnormal vessels around the tumor to the solid tumor core. This proved true in both subcutaneous and orthotopic pancreatic tumor mice models, as confirmed by immunofluorescent studies. In combination with NIR-II laser photoirradiation, the cRGD-CPNPs provided near-baseline tumor growth inhibition through PTT both in vitro and in vivo. Notably, the combination of the present cRGD-CPNPs and photoirradiation was found to inhibit intra-abdominal metastases in an orthotopic pancreatic tumor mouse model. The cRGD-CPNPs also displayed good biosafety profiles, as inferred from PA tomography, blood analyses, and H&E staining. They thus appear promising for use in combined PA imaging and PT therapeutic treatment of pancreatic cancer
- âŠ