10,722 research outputs found
Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction
Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO(2) environments. The increased vegetation activities over high latitudes under a 2xCO(2) condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification.open1188sciescopu
Robust simulation methodology for surface-roughness loss in interconnect and package modelings
In multigigahertz integrated-circuit design, the extra energy loss caused by conductor surface roughness in metallic interconnects and packagings is more evident than ever before and demands explicit consideration for accurate prediction of signal integrity and energy consumption. Existing techniques based on analytical approximation, despite simple formulations, suffer from restrictive valid ranges, namely, either small or large roughness/frequencies. In this paper, we propose a robust and efficient numerical-simulation methodology applicable to evaluating general surface roughness, described by parameterized stochastic processes, across a wide frequency band. Traditional computation-intensive electromagnetic simulation is avoided via a tailored scalar-wave modeling to capture the power loss due to surface roughness. The spectral stochastic collocation method is applied to construct the complete statistical model. Comparisons with full wave simulation as well as existing methods in their respective valid ranges then verify the effectiveness of the proposed approach. © 2009 IEEE.published_or_final_versio
Arithmetical Congruence Preservation: from Finite to Infinite
Various problems on integers lead to the class of congruence preserving
functions on rings, i.e. functions verifying divides for all
. We characterized these classes of functions in terms of sums of rational
polynomials (taking only integral values) and the function giving the least
common multiple of . The tool used to obtain these
characterizations is "lifting": if is a surjective morphism,
and a function on a lifting of is a function on such that
. In this paper we relate the finite and infinite notions
by proving that the finite case can be lifted to the infinite one. For -adic
and profinite integers we get similar characterizations via lifting. We also
prove that lattices of recognizable subsets of are stable under inverse
image by congruence preserving functions
Optically pumped ultraviolet lasing from nitride nanopillars at room temperature
A vertical cavity structure composing of an in situ grown bottom Al x Ga 1-x N/Al y Ga 1-y N distributed Bragg reflector and a top SiO 2 / HfO 2 dielectric mirror for ultraviolet (UV) emission has been demonstrated. Close-packed nanopillars with diameters of around 500 nm have been achieved by the route of nanosphere lithography combined with inductively-coupled plasma etching. Optically-pumped UV lasing at a wavelength of 343.7 nm (3.608 eV) was observed at room temperature, with a threshold excitation density of 0.52 MW/ cm 2. The mechanism of the lasing action is discussed in detail. Our investigation indicates promising possibilities in nitride-based resonant cavity devices, particularly toward realizing the UV nitride-based vertical-cavity surface-emitting laser. © 2010 American Institute of Physics.published_or_final_versio
Reduction of Thermal Resistance and Optical Power Loss Using Thin-Film Light-Emitting Diode (LED) Structure
In this paper, a GaN-LED with sapphire structure and a thin-film LED without sapphire structure are characterized in the photo-electro-thermal (PET) modeling framework for comparison. Starting from the analysis and modeling of internal quantum efficiency as a function of current and temperature of blue LED, this work develops the thin-film LED device model and derives its optical power and the heat dissipation coefficient. The device parameters of the two LED devices with different structural designs are then compared. Practical optical power measurements are compared with theoretical predictions based on the two types of fabricated devices. It is shown that the thin-film LED device has much lower thermal resistance and optical power loss.published_or_final_versio
Line versus Flux Statistics -- Considerations for the Low Redshift Lyman-alpha Forest
The flux/transmission power spectrum has become a popular statistical tool in
studies of the high redshift () Lyman-alpha forest. At low redshifts,
where the forest has thinned out into a series of well-isolated absorption
lines, the motivation for flux statistics is less obvious. Here, we study the
relative merits of flux versus line correlations, and derive a simple condition
under which one is favored over the other on purely statistical grounds.
Systematic errors probably play an important role in this discussion, and they
are outlined as well.Comment: 6 pages, to appear in "The IGM/Galaxy Connection: The Distribution of
Baryons at z=0", eds. J. L. Rosenberg and M. E. Putma
IFN-gamma is associated with risk of Schistosoma japonicum infection in China.
Before the start of the schistosomiasis transmission season, 129 villagers resident on a Schistosoma japonicum-endemic island in Poyang Lake, Jiangxi Province, 64 of whom were stool-positive for S. japonicum eggs by the Kato method and 65 negative, were treated with praziquantel. Forty-five days later the 93 subjects who presented for follow-up were all stool-negative. Blood samples were collected from all 93 individuals. S. japonicum soluble worm antigen (SWAP) and soluble egg antigen (SEA) stimulated IL-4, IL-5 and IFN-gamma production in whole-blood cultures were measured by ELISA. All the subjects were interviewed nine times during the subsequent transmission season to estimate the intensity of their contact with potentially infective snail habitats, and the subjects were all re-screened for S. japonicum by the Kato method at the end of the transmission season. Fourteen subjects were found to be infected at that time. There was some indication that the risk of infection might be associated with gender (with females being at higher risk) and with the intensity of water contact, and there was evidence that levels of SEA-induced IFN-gamma production were associated with reduced risk of infection
Prevalence and awareness of lower urinary tract symptoms among males in the Outpatient Clinics of Universiti Kebangsaan Malaysia Medical Centre.
This study aims to determine the prevalence of lower urinary tract symptoms (LUTS) and level of awareness among male outpatients in Universiti Kebangsaan Malaysia Medical Centre (UKMMC). A questionnaire consisting of demographic data, questions related to knowledge, attitude and practice on BPH and the International Prostate Symptom Score (IPSS) was used for this study. Uroflowmetry and bladder scan were used to evaluate the function of the urinary tract and severity of BPH. Urine dipstick was done for glycosuria, proteinuria and haematuria. A total of 220 respondents were surveyed. The prevalence of moderately and severely symptomatic LUTS was 42.7%. The most commonly reported LUTS were nocturia (78.2%), frequency (58.2%) and incomplete emptying (44.6%). The prevalence of glycosuria, proteinuria and haematuria were 23.6%, 11.4% and 1.8% respectively. There was a significant association between increasing age with the severity of LUTS (p=0.005). Out of 102 respondents with voided urine volume greater than 150 mL, there was a significant decrease in maximum (Qmax) (p=0.039) and average (Qave) urine flow rates with every 10 years increase of age (p=0.001). The majority of respondents (59.5%) have heard of BPH before. Over 78.2% of the respondents would seek medical attention if they have LUTS with 15.9% saying they would seek traditional treatment. In conclusion, the prevalence of LUTS was high and the level of awareness was satisfactory
An EPTAS for Scheduling on Unrelated Machines of Few Different Types
In the classical problem of scheduling on unrelated parallel machines, a set
of jobs has to be assigned to a set of machines. The jobs have a processing
time depending on the machine and the goal is to minimize the makespan, that is
the maximum machine load. It is well known that this problem is NP-hard and
does not allow polynomial time approximation algorithms with approximation
guarantees smaller than unless PNP. We consider the case that there
are only a constant number of machine types. Two machines have the same
type if all jobs have the same processing time for them. This variant of the
problem is strongly NP-hard already for . We present an efficient
polynomial time approximation scheme (EPTAS) for the problem, that is, for any
an assignment with makespan of length at most
times the optimum can be found in polynomial time in the
input length and the exponent is independent of . In particular
we achieve a running time of , where
denotes the input length. Furthermore, we study three other problem
variants and present an EPTAS for each of them: The Santa Claus problem, where
the minimum machine load has to be maximized; the case of scheduling on
unrelated parallel machines with a constant number of uniform types, where
machines of the same type behave like uniformly related machines; and the
multidimensional vector scheduling variant of the problem where both the
dimension and the number of machine types are constant. For the Santa Claus
problem we achieve the same running time. The results are achieved, using mixed
integer linear programming and rounding techniques
Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders
Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations
- …