14 research outputs found
In Vitro Regeneration and Genetic Transformation of Sesbania Drummondii: A Medicinally and Environmentally Important Plant
This study describes rapid propagation of Sesbania drummondii using nodal explants isolated from seedlings and young plants. The nodal segments proliferated into multiple shoots on Murashige and Skoog (MS) medium supplemented with 22.2 /M benzyladenine. Murashige and Skoog medium containing 2.2 and 4.5 //M thidiazuron induced 5 - 6 healthier shoots per axillary node from 3-month-old plants. Nodal segments cultured on MS medium containing combinations of benzyladenine (8.8 and 11.1 /JM) and either indole-3-butyric acid (0.24 - 2.46 //M) or indole-3-acetic acid (0.28 - 2.85 //M) produced fewer shoots. Callus when subcultured on 2.2 /LihA thidiazuron containing medium resulted in its mass proliferation of calli having numerous embryoid-like structures. Indole-3-butyric acid (0.24 - 2.46 |aM) was found suitable for root induction. In vitro regenerated plants were acclimatized in greenhouse conditions. This report is a first report on studies of in vitro regeneration of S. drummondii. grobacterium tumefaciens, bearing the plasmid pCAMBIA 1305.1, was used to develop a genetic transformation system for S. drummondii. This plasmid contains a GUS (P-glucuronidase) reporter gene and a gene conferring resistance to the antibiotic hygromycin. The genes are placed under the control of the 35S CaMV (cauliflower mosaic virus) promoter and a NOS terminator. A plant catalase intron is inserted into the GUS reporter gene. The presence of GUS enzymatic activity, as a result of Agrobacterium-mediated transformation, was indicated by a GUS histochemical assay: the appearance of blue color in transformed tissue in the presence of substrate X-Gluc (5-bromo-4-chloro-3-indoly glucuronide). Polymerase Chain Reaction (PCR) was used to demonstrate the presence of the GUS reporter gene in the plant genome. Genomic DNA extracted from the transformed tissue was used to amplify the GUS gene by gene- specific primers. The PCR products were visualized by agarose gel-electrophoresis
Impact of mixing and aeration on cell culture performance and quality
In order to support large-scale biologics manufacturing, it is important to establish scale-down models which can match the process performance and product quality of large scale bioreactors. This can potentially be achieved by mimicking the microenvironment that the cells experience in large scale by maintaining same set points for scale independent parameters and scaling down other scale dependent parameters such as agitation and aeration. In order to understand the impact of agitation and aeration on cell culture performance and product quality, we studied different impellers and sparger configurations in a 3L scale down model using CHO cells. The experiments showed significant impacts of impeller types, impeller orientation, and sparger types on cell culture performance and product quality. This data along with additional bioreactor characterization data for kLa, mixing times and shear stress will be presented. These studies demonstrate the importance of microenvironment as cell culture processes are scaled up or down and help establish a successful scale down model for a product manufactured at multiple manufacturing sites
Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions
BACKGROUND: Squamous cell carcinoma (SCC) of the skin is the most aggressive form of non-melanoma skin cancer (NMSC), and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3) in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. RESULTS: To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK), to non-tumorigenic transformed skin cells (HaCaT), to highly tumorigenic cells (SRB1-m7 and SRB12-p9) and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN). The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM). This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. CONCLUSION: This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or protein to tumor cells could induce apoptosis and/or sensitize those cells to the apoptotic effects of cancer therapeutic agents, raising the possibility of using S3DN as an adjunct for treatment of skin SCC
Identification of the B-Raf/Mek/Erk MAP kinase pathway as a target for all-trans retinoic acid during skin cancer promotion
<p>Abstract</p> <p>Background</p> <p>Retinoids have been studied extensively for their potential as therapeutic and chemopreventive agents for a variety of cancers, including nonmelanoma skin cancer (NMSC). Despite their use for many years, the mechanism of action of retinoids in the prevention of NMSC is still unclear. In this study we have attempted to understand the chemopreventive mechanism of all-<it>trans </it>retinoic acid (ATRA), a primary biologically active retinoid, in order to more efficiently utilize retinoids in the clinic.</p> <p>Results</p> <p>We have used the 2-stage dimethylbenzanthracene (DMBA)/12-<it>O</it>-tetradecanoylphorbol-13-acetate (TPA) mouse skin carcinogenesis model to investigate the chemopreventive effects of ATRA. We have compared the gene expression profiles of control skin to skin subjected to the 2-stage protocol, with or without ATRA, using Affymetrix 430 2.0 DNA microarrays. Approximately 49% of the genes showing altered expression with TPA treatment are conversely affected when ATRA is co-administered. The activity of these genes, which we refer to as 'counter-regulated', may contribute to chemoprevention by ATRA. The counter-regulated genes have been clustered into functional categories and bioinformatic analysis has identified the B-Raf/Mek/Erk branch of the MAP kinase pathway as one containing several genes whose upregulation by TPA is blocked by ATRA. We also show that ATRA blocks signaling through this pathway, as revealed by immunohistochemistry and Western blotting. Finally, we found that blocking the B-Raf/Mek/Erk pathway with a pharmacological inhibitor, Sorafenib (BAY43-9006), induces squamous differentiation of existing skin SCCs formed in the 2-stage model.</p> <p>Conclusion</p> <p>These results indicate that ATRA targets the B-Raf/Mek/Erk signaling pathway in the 2-stage mouse skin carcinogenesis model and this activity coincides with its chemopreventive action. This demonstrates the potential for targeting the B-Raf/Mek/Erk pathway for chemoprevention and therapy of skin SCC in humans. In addition our DNA microarray results provide the first expression signature for the chemopreventive effect of ATRA in a mouse skin cancer model. This is a potential source for novel targets for ATRA and other chemopreventive and therapeutic agents that can eventually be tested in the clinic.</p
Metric for Measuring the Effectiveness of Clustering of DNA Microarray Expression
BACKGROUND: The recent advancement of microarray technology with lower noise and better affordability makes it possible to determine expression of several thousand genes simultaneously. The differentially expressed genes are filtered first and then clustered based on the expression profiles of the genes. A large number of clustering algorithms and distance measuring matrices are proposed in the literature. The popular ones among them include hierarchal clustering and k-means clustering. These algorithms have often used the Euclidian distance or Pearson correlation distance. The biologists or the practitioners are often confused as to which algorithm to use since there is no clear winner among algorithms or among distance measuring metrics. Several validation indices have been proposed in the literature and these are based directly or indirectly on distances; hence a method that uses any of these indices does not relate to any biological features such as biological processes or molecular functions. RESULTS: In this paper we have proposed a metric to measure the effectiveness of clustering algorithms of genes by computing inter-cluster cohesiveness and as well as the intra-cluster separation with respect to biological features such as biological processes or molecular functions. We have applied this metric to the clusters on the data set that we have created as part of a larger study to determine the cancer suppressive mechanism of a class of chemicals called retinoids. We have considered hierarchal and k-means clustering with Euclidian and Pearson correlation distances. Our results show that genes of similar expression profiles are more likely to be closely related to biological processes than they are to molecular functions. The findings have been supported by many works in the area of gene clustering. CONCLUSION: The best clustering algorithm of genes must achieve cohesiveness within a cluster with respect to some biological features, and as well as maximum separation between clusters in terms of the distribution of genes of a behavioral group across clusters. We claim that our proposed metric is novel in this respect and that it provides a measure of both inter and intra cluster cohesiveness. Best of all, computation of the proposed metric is easy and it provides a single quantitative value, which makes comparison of different algorithms easier. The maximum cluster cohesiveness and the maximum intra-cluster separation are indicated by the metric when its value is 0. We have demonstrated the metric by applying it to a data set with gene behavioral groupings such as biological process and molecular functions. The metric can be easily extended to other features of a gene such as DNA binding sites and protein-protein interactions of the gene product, special features of the intron-exon structure, promoter characteristics, etc. The metric can also be used in other domains that use two different parametric spaces; one for clustering and the other one for measuring the effectiveness
Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport
Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis
Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions
Abstract Background Squamous cell carcinoma (SCC) of the skin is the most aggressive form of non-melanoma skin cancer (NMSC), and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3) in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. Results To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK), to non-tumorigenic transformed skin cells (HaCaT), to highly tumorigenic cells (SRB1-m7 and SRB12-p9) and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN). The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM). This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. Conclusion This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or protein to tumor cells could induce apoptosis and/or sensitize those cells to the apoptotic effects of cancer therapeutic agents, raising the possibility of using S3DN as an adjunct for treatment of skin SCC.</p