52 research outputs found

    Private Graphon Estimation for Sparse Graphs

    Get PDF
    We design algorithms for fitting a high-dimensional statistical model to a large, sparse network without revealing sensitive information of individual members. Given a sparse input graph GG, our algorithms output a node-differentially-private nonparametric block model approximation. By node-differentially-private, we mean that our output hides the insertion or removal of a vertex and all its adjacent edges. If GG is an instance of the network obtained from a generative nonparametric model defined in terms of a graphon WW, our model guarantees consistency, in the sense that as the number of vertices tends to infinity, the output of our algorithm converges to WW in an appropriate version of the L2L_2 norm. In particular, this means we can estimate the sizes of all multi-way cuts in GG. Our results hold as long as WW is bounded, the average degree of GG grows at least like the log of the number of vertices, and the number of blocks goes to infinity at an appropriate rate. We give explicit error bounds in terms of the parameters of the model; in several settings, our bounds improve on or match known nonprivate results.Comment: 36 page

    Partition function zeros at first-order phase transitions: Pirogov-Sinai theory

    Full text link
    This paper is a continuation of our previous analysis [BBCKK] of partition functions zeros in models with first-order phase transitions and periodic boundary conditions. Here it is shown that the assumptions under which the results of [BBCKK] were established are satisfied by a large class of lattice models. These models are characterized by two basic properties: The existence of only a finite number of ground states and the availability of an appropriate contour representation. This setting includes, for instance, the Ising, Potts and Blume-Capel models at low temperatures. The combined results of [BBCKK] and the present paper provide complete control of the zeros of the partition function with periodic boundary conditions for all models in the above class.Comment: 46 pages, 2 figs; continuation of math-ph/0304007 and math-ph/0004003, to appear in J. Statist. Phys. (special issue dedicated to Elliott Lieb

    On the Spread of Viruses on the Internet

    Get PDF
    We analyze the contact process on random graphs generated according to the preferential attachment scheme as a model for the spread of viruses in the Internet. We show that any virus with a positive rate of spread from a node to its neighbors has a non-vanishing chance of becoming epidemic. Quantitatively, we discover an interesting dichotomy: for it virus with effective spread rate λ, if the infection starts at a typical vertex, then it develops into an epidemic with probability λ^Θ ((log (1/ λ)/log log (1/ λ))), but on average the epidemic probability is λ^(Θ (1))

    An LpL^p theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions

    Full text link
    We introduce and develop a theory of limits for sequences of sparse graphs based on LpL^p graphons, which generalizes both the existing L∞L^\infty theory of dense graph limits and its extension by Bollob\'as and Riordan to sparse graphs without dense spots. In doing so, we replace the no dense spots hypothesis with weaker assumptions, which allow us to analyze graphs with power law degree distributions. This gives the first broadly applicable limit theory for sparse graphs with unbounded average degrees. In this paper, we lay the foundations of the LpL^p theory of graphons, characterize convergence, and develop corresponding random graph models, while we prove the equivalence of several alternative metrics in a companion paper.Comment: 44 page
    • …
    corecore