13 research outputs found

    Optimization-based multi-contact motion planning for legged robots

    Get PDF
    For legged robots, generating dynamic and versatile motions is essential for interacting with complex and ever-changing environments. So far, robots that routinely operate reliably over rough terrains remains an elusive goal. Yet the primary promise of legged locomotion is to replace humans and animals in performing tedious and menial tasks, without requiring changes in the environment as wheeled robots do. A necessary step towards this goal is to endow robots with capabilities to reason about contacts but this vital skill is currently missing. An important justification for this is that contact phenomena are inherently non-smooth and non-convex. As a result, posing and solving problems involving contacts is non-trivial. Optimization-based motion planning constitutes a powerful paradigm to this end. Consequently, this thesis considers the problem of generating motions in contact-rich situations. Specifically, we introduce several methods that compute dynamic and versatile motion plans from a holistic optimization perspective based on trajectory optimization techniques. The advantage is that the user needs to provide a high-level task description in the form of an objective function only. Subsequently, the methods output a detailed motion plan—that includes contact locations, timings, gait patterns—that optimally achieves the high-level task. Initially, we assume that such a motion plan is available, and we investigate the relevant control problem. The problem is to track a nominal motion plan as close as possible given external disturbances by computing inputs for the robot. Thus, this stage typically follows the motion planning stage. Additionally, this thesis presents methods that do not necessarily require a separate control stage by computing the controller structure automatically. Afterwards, we proceed to the main parts of this thesis. First, assuming a pre-specified contact sequence, we formulate a trajectory optimization method reminiscent of hybrid approaches. Its backbone is a high-accuracy integrator, enabling reliable long-term motion planning while satisfying both translational and rotational dynamics. We utilize it to compute motion plans for a hopper traversing rough terrains—with gaps and obstacles—and performing explosive motions, like a somersault. Subsequently, we provide a discussion on how to extend the method when the contact sequence is unspecified. In the next chapter, we increase the complexity of the problem in many aspects. First, we formulate the problem in joint-level utilizing full dynamics and kinematics models. Second, we assume a contact-implicit perspective, i.e. decisions about contacts are implicitly defined in the problem’s formulation rather than defined as explicit contact modes. As a result, pre-specification of the contact interactions is not required, like the order by which the feet contact the ground for a quadruped robot model and the respective timings. Finally, we extend the classical rigid contact model to surfaces with soft and slippery properties. We quantitatively evaluate our proposed framework by performing comparisons against the rigid model and an alternative contact-implicit framework. Furthermore, we compute motion plans for a high-dimensional quadruped robot in a variety of terrains exhibiting the enhanced properties. In the final study, we extend the classical Differential Dynamic Programming algorithm to handle systems defined by implicit dynamics. While this can be of interest in its own right, our particular application is computing motion plans in contact-rich settings. Compared to the method presented in the previous chapter, this formulation enables experiencing contacts with all body parts in a receding horizon fashion, albeit with limited contact discovery capabilities. We demonstrate the properties of our proposed extension by comparing implicit and explicit models and generating motion plans for a single-legged robot with multiple contacts both for trajectory optimization and receding horizon settings. We conclude this thesis by providing insights and limitations of the proposed methods, and possible future directions that can improve and extend aspects of the presented work

    Trajectory Optimization of Contact-rich Motions using Implicit Differential Dynamic Programming

    Get PDF

    Contact-Implicit Trajectory Optimization using an Analytically Solvable Contact Model for Locomotion on Variable Ground

    Get PDF
    This paper presents a novel contact-implicit trajectory optimization method using an analytically solvable contact model to enable planning of interactions with hard, soft, and slippery environments. Specifically, we propose a novel contact model that can be computed in closed-form, satisfies friction cone constraints and can be embedded into direct trajectory optimization frameworks without complementarity constraints. The closed-form solution decouples the computation of the contact forces from other actuation forces and this property is used to formulate a minimal direct optimization problem expressed with configuration variables only. Our simulation study demonstrates the advantages over the rigid contact model and a trajectory optimization approach based on complementarity constraints. The proposed model enables physics-based optimization for a wide range of interactions with hard, slippery, and soft grounds in a unified manner expressed by two parameters only. By computing trotting and jumping motions for a quadruped robot, the proposed optimization demonstrates the versatility for multi-contact motion planning on surfaces with different physical properties.Comment: in IEEE Robotics and Automation Letter

    Robust Foot Placement Control for Dynamic Walking using Online Parameter Estimation

    Get PDF

    Comparison Study of Nonlinear Optimization of Step Durations and Foot Placement for Dynamic Walking

    Get PDF
    This paper studies bipedal locomotion as a nonlinear optimization problem based on continuous and discrete dynamics, by simultaneously optimizing the remaining step duration, the next step duration and the foot location to achieve robustness. The linear inverted pendulum as the motion model captures the center of mass dynamics and its low-dimensionality makes the problem more tractable. We first formulate a holistic approach to search for optimality in the three-dimensional parametric space and use these results as baseline. To further improve computational efficiency, our study investigates a sequential approach with two stages of customized optimization that first optimizes the current step duration, and subsequently the duration and location of the next step. The effectiveness of both approaches is successfully demonstrated in simulation by applying different perturbations. The comparison study shows that these two approaches find mostly the same optimal solutions, but the latter requires considerably less computational time, which suggests that the proposed sequential approach is well suited for real-time implementation with a minor trade-off in optimality.Comment: This paper is accepted for presentation at the 2018 IEEE International Conference on Robotics and Automation, May 21-25, 2018, Brisbane, Australia and for inclusion in the conference proceedings. This paper includes 8 pages, 17 figure

    Automatic Gait Pattern Selection for Legged Robots

    Get PDF
    An important issue when synthesizing legged locomotion plans is the combinatorial complexity that arises from gait pattern selection. Though it can be defined manually, the gait pattern plays an important role in the feasibility and optimality of a motion with respect to a task. Replacing human intuition with an automatic and efficient approach for gait pattern selection would allow for more autonomous robots, responsive to task and environment changes. To this end, we propose the idea of building a map from task to gait pattern selection for given environment and performance objective. Indeed, we show that for a 2D half-cheetah model and a quadruped robot, a direct mapping between a given task and an optimal gait pattern can be established. We use supervised learning to capture the structure of this map in a form of gait regions. Furthermore, we propose to construct a warm-starting trajectory for each gait region. We empirically show that these warm-starting trajectories improve the convergence speed of our trajectory optimization problem up to 60 times when compared with random initial guesses. Finally, we conduct experimental trials on the ANYmal robot to validate our method.</p
    corecore