158 research outputs found

    Stabilizing switching signals: a transition from point-wise to asymptotic conditions

    Full text link
    Characterization of classes of switching signals that ensure stability of switched systems occupies a significant portion of the switched systems literature. This article collects a multitude of stabilizing switching signals under an umbrella framework. We achieve this in two steps: Firstly, given a family of systems, possibly containing unstable dynamics, we propose a new and general class of stabilizing switching signals. Secondly, we demonstrate that prior results based on both point-wise and asymptotic characterizations follow our result. This is the first attempt in the switched systems literature where these switching signals are unified under one banner.Comment: 7 page

    A graph theoretic approach to input-to-state stability of switched systems

    Full text link
    This article deals with input-to-state stability (ISS) of discrete-time switched systems. Given a family of nonlinear systems with exogenous inputs, we present a class of switching signals under which the resulting switched system is ISS. We allow non-ISS systems in the family and our analysis involves graph-theoretic arguments. A weighted digraph is associated to the switched system, and a switching signal is expressed as an infinite walk on this digraph, both in a natural way. Our class of stabilizing switching signals (infinite walks) is periodic in nature and affords simple algorithmic construction.Comment: 14 pages, 1 figur
    corecore