121 research outputs found

    Diversity of Anopheles species and trophic behavior of putative malaria vectors in two malaria endemic areas of northwestern Thailand

    Get PDF
    We determined the species diversity, blood-feeding behavior, and host preference of Anopheles mosquitoes in two malaria endemic areas of Tak (Mae Sot District) and Mae Hong Son (Sop Moei District) Provinces, located along the Thai border with Myanmar, during a consecutive two-year period. Anopheline mosquitoes were collected using indoor and outdoor human-landing captures and outdoor cow-baited collections. Mosquitoes were initially identified using morphological characters, followed by the appropriate multiplex AS-PCR assay for the identification of sibling species within Anopheles (Cellia) complexes and groups present. Real-time PCR was performed for parasite-specific detection in mosquitoes (Plasmodium spp. and Wuchereria bancrofti). A total of 7,129 Anopheles females were captured, 3,939 from Mae Sot and 3,190 from Sop Moei, with 58.6% and 37% of all anophelines identified as An. minimus, respectively. All three malaria vector complexes were detected in both areas. One species within the Minimus Complex (An. minimus) was present along with two related species in the Funestus Group, (An. aconitus, An. varuna), two species within the Dirus Complex (An. dirus, An. baimaii), and four species within the Maculatus Group (An. maculatus, An. sawadwongporni, An. pseudowillmori, and An. dravidicus). The trophic behavior of An. minimus, An. dirus, An. baimaii, An. maculatus, and An. sawadwongporni are described herein. The highest An. minimus densities were detected from February through April of both years. One specimen of An. minimus from Mae Sot was found positive for Plasmodium vivax

    Biting patterns and host preference of Anopheles epiroticus in Chang Island, Trat Province, Eastern Thailand

    Get PDF
    A study of species diversity of Anopheles mosquitoes, biting patterns, and seasonal abundance of important mosquito vectors was conducted in two villages of Chang Island, Trat Province, in eastern Thailand, one located along the coast and the other in the low hills of the central interior of the island. Of 5,399 captured female anophelines, 70.25% belong to the subgenus Cellia and remaining specimens to the subgenus Anopheles. Five important putative malaria vectors were molecularly identified, including Anopheles epiroticus, Anopheles dirus, Anopheles sawadwongporni, Anopheles maculatus, and Anopheles minimus. Anopheles epiroticus was the most commonly collected species in the coastal site, whereas An. dirus was found to be most abundant in the forest-hill site. From both locations, a greater number of mosquitoes was collected during the dry season compared to the wet. Anopheles epiroticus showed greater exophagic and zoophilic behavior with the highest blood feeding densities occurring between 18:00 and 19:00. In contrast, An. dirus demonstrated an activity peak between midnight and 01:00. We conclude that An. epiroticus and An. dirus, in coastal and inland areas, respectively, appear to be the most epidemiologically important malaria vectors on Chang Island. As no studies of vector competency specific to Chang Island have been conducted, our conclusions that these two species play a primary role in malaria transmission are based on evidence from other localities in Thailand and mainland Southeast Asia. This information serves as a basis for designing improved vector control programs that target specific species, and if integrated with other interventions could result in the elimination of malaria transmission on the island

    A semi-field evaluation in Thailand of the use of human landing catches (HLC) versus human-baited double net trap (HDN) for assessing the impact of a volatile pyrethroid spatial repellent and pyrethroid-treated clothing on; Anopheles minimus; landing

    Get PDF
    BACKGROUND: The mosquito landing rate measured by human landing catches (HLC) is the conventional endpoint used to evaluate the impact of vector control interventions on human-vector exposure. Non-exposure based alternatives to the HLC are desirable to minimize the risk of accidental mosquito bites. One such alternative is the human-baited double net trap (HDN), but the estimated personal protection of interventions using the HDN has not been compared to the efficacy estimated using HLC. This semi-field study in Sai Yok District, Kanchanaburi Province, Thailand, evaluates the performance of the HLC and the HDN for estimating the effect on Anopheles minimus landing rates of two intervention types characterized by contrasting modes of action, a volatile pyrethroid spatial repellent (VSPR) and insecticide-treated clothing (ITC). METHODS: Two experiments to evaluate the protective efficacy of (1) a VPSR and (2) ITC, were performed. A block randomized cross-over design over 32 nights was carried out with both the HLC or HDN. Eight replicates per combination of collection method and intervention or control arm were conducted. For each replicate, 100 An. minimus were released and were collected for 6 h. The odds ratio (OR) of the released An. minimus mosquitoes landing in the intervention compared to the control arm was estimated using logistic regression, including collection method, treatment, and experimental day as fixed effects. RESULTS: For the VPSR, the protective efficacy was similar for the two methods: 99.3%, 95% CI (99.5-99.0) when measured by HLC, and 100% (100, Inf) when measured by HDN where no mosquitoes were caught (interaction test p = 0.99). For the ITC, the protective efficacy was 70% (60-77%) measured by HLC but there was no evidence of protection when measured by HDN [4% increase (15-27%)] (interaction test p < 0.001). CONCLUSIONS: Interactions between mosquitoes, bite prevention tools and the sampling method may impact the estimated intervention protective efficacy. Consequently, the sampling method must be considered when evaluating these interventions. The HDN is a valid alternative trapping method (relative to the HLC) for evaluating the impact of bite prevention methods that affect mosquito behaviour at a distance (e.g. VPSR), but not for interventions that operate through tarsal contact (e.g., ITC)

    A New Classification System for the Actions of IRS Chemicals Traditionally Used For Malaria Control

    Get PDF
    Knowledge of how mosquitoes respond to insecticides is of paramount importance in understanding how an insecticide functions to prevent disease transmission. A suite of laboratory assays was used to quantitatively characterize mosquito responses to toxic, contact irritant, and non-contact spatial repellent actions of standard insecticides. Highly replicated tests of these compounds over a range of concentrations proved that all were toxic, some were contact irritants, and even fewer were non-contact repellents. Of many chemicals tested, three were selected for testing in experimental huts to confirm that chemical actions documented in laboratory tests are also expressed in the field. The laboratory tests showed the primary action of DDT is repellent, alphacypermethrin is irritant, and dieldrin is only toxic. These tests were followed with hut studies in Thailand against marked-released populations. DDT exhibited a highly protective level of repellency that kept mosquitoes outside of huts. Alphacypermethrin did not keep mosquitoes out, but its strong irritant action caused them to prematurely exit the treated house. Dieldrin was highly toxic but showed no irritant or repellent action. Based on the combination of laboratory and confirmatory field data, we propose a new paradigm for classifying chemicals used for vector control according to how the chemicals actually function to prevent disease transmission inside houses. The new classification scheme will characterize chemicals on the basis of spatial repellent, contact irritant and toxic actions

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated “Safe Sites”?

    Get PDF
    Aedes aegypti, the primary vector mosquito of dengue virus, typically lives near or inside human dwellings, and feeds preferentially on humans. The control of this mosquito vector remains the most important dengue prevention method. The use of chemicals at levels toxic to mosquitoes is currently the only confirmed effective adult vector control strategy with interventions usually applied following epidemic onset. However, research indicates that sub-lethal chemical approaches to prevent human-vector contact at the house level exist: contact irritancy and spatial repellency. The optimum efficacy of an intervention based on contact irritant actions of chemicals will, however, require full knowledge of variables that will influence vector resting behavior and thereby chemical uptake from treated sources. Here we characterize the resting patterns of female Ae. aegypti on two material types at various dark:light surface area coverage ratios and contrast configurations under chemical-free and treated conditions using a laboratory behavioral assay. Change in resting behavior between baseline and treatment conditions was quantified to determine potential negative effects of untreated surfaces (“safe sites”) when irritant responses are elicited. We show that treatment of preferred resting sites with known irritant compounds do not stimulate mosquitoes to move to safe sites after making contact with treated surfaces

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes

    Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, <it>Anopheles epiroticus</it>, was highly pyrethroid-resistant in the Mekong delta, whereas <it>Anopheles minimus sensu lato </it>was pyrethroid-resistant in northern Vietnam. <it>Anopheles dirus sensu stricto </it>showed possible resistance to type II pyrethroids in central Vietnam. <it>Anopheles subpictus </it>was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved.</p> <p>Methods</p> <p>By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region.</p> <p>Results</p> <p>Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of <it>Anopheles </it>populations from the Mekong region for the presence of knockdown resistance (<it>kdr</it>), but no <it>kdr </it>mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in <it>An. epiroticus </it>and <it>An. subpictus </it>of the Mekong delta. The DDT resistance in <it>An. subpictus </it>might be conferred to a high GST activity. The pyrethroid resistance in <it>An. minimus s.l</it>. is possibly associated with increased detoxification by esterases and P450 monooxygenases.</p> <p>Conclusion</p> <p>As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region.</p

    Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Declining in clinical efficacy of artesunate-mefloquine combination has been documented in areas along the eastern border (Thai-Cambodian) of Thailand. In the present study, the clinical efficacy of the three-day combination regimen of artesunate-mefloquine as first-line treatment for acute uncomplicated falciparum malaria in Thailand was monitored in an area along the western border (Thai-Myanmar) of the country.</p> <p>Methods</p> <p>A total of 150 Burmese patients (85 males and 65 females) aged between 16 and 50 years who were attending the Mae Tao clinic, Mae-Sot, Tak Province, and presenting with symptomatic acute uncomplicated <it>Plasmodium falciparum </it>malaria were included into the study. Patients were treated initially (day 0) with 4 mg/kg body weight artesunate and 15 mg/kg body weight mefloquine. The dose regimen on day 2 was 4 mg/kg body weight artesunate and 10 mg/kg body weight mefloquine. On day 3, artesunate at the dose of 4 mg/kg body weight was given with 0.6 mg/kg body weight primaquine. Whole blood mefloquine and plasma artesunate and dihydroartemisinin (active plasma metabolite of artesunate) concentrations following treatment were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS), respectively.</p> <p>Results</p> <p>Thirty-four cases had recrudescence during days 7 and 42. Five and 5 cases, respectively had reinfection with <it>P. falciparum </it>and reappearance of <it>Plasmodium vivax </it>in their peripheral blood during follow-up. The Kaplan-Meier estimate of the 42-and 28-day efficacy rates of this combination regimen were 72.58% (95% CI: 63.20-79.07%) and 83.06 (95% CI 76.14-94.40%), respectively. Parasite clearance time (PCT) and fever clearance time (FCT) were significantly prolonged in patients with treatment failure compared with those with sensitive response [median (95% CI) values for PCT 32.0 (20.0-48.0) <it>vs </it>24.0 (14.0-32.0) hr and FCT 30.0 (22.0-42.0) <it>vs </it>26.0 (18.0-36.0) hr; <it>p </it>< 0.005]. Whole blood mefloquine concentrations on days 1, 7 and 14 in patients with sensitive and recrudescence response were comparable. Although plasma concentration of dihydroartemisinin at 1 hour of treatment was significantly lower in patients with recrudescence compared with sensitive response [mean (95% CI) 456 (215-875) <it>vs </it>525 (452-599) ng/ml; <it>p </it>< 0.001], the proportion of patients with recrudescence who had relatively low (compared with the lower limit of 95% CI defined in the sensitive group) was significantly smaller than that of the sensitive group.</p> <p>Conclusions</p> <p>Although pharmacokinetic (ethnic-related) factors including resistance of <it>P. falciparum </it>to mefloquine contribute to some treatment failure following treatment with a three-day combination regimen of artesunate-mefloquine, results suggest that artesunate resistance may be emerging at the Thai-Myanmar border.</p

    Changes in the Treatment Responses to Artesunate-Mefloquine on the Northwestern Border of Thailand during 13 Years of Continuous Deployment

    Get PDF
    Background: Artemisinin combination treatments (ACT) are recommended as first line treatment for falciparum malaria throughout the malaria affected world. We reviewed the efficacy of a 3-day regimen of mefloquine and artesunate regimen (MAS ), over a 13 year period of continuous deployment as first-line treatment in camps for displaced persons and in clinics for migrant population along the Thai-Myanmar border. Methods and Findings: 3,264 patients were enrolled in prospective treatment trials between 1995 and 2007 and treated with MAS. The proportion of patients with parasitaemia persisting on day-2 increased significantly from 4.5% before 2001 to 21.9% since 2002 (p&lt;0.001). Delayed parasite clearance was associated with increased risk of developing gametocytaemia (AOR = 2.29; 95% CI, 2.00-2.69, p = 0.002). Gametocytaemia on admission and carriage also increased over the years (p = 0.001, test for trend, for both). MAS efficacy has declined slightly but significantly (Hazards ratio 1.13; 95% CI, 1.07-1.19, p&lt;0.001), although efficacy in 2007 remained well within acceptable limits: 96.5% (95% CI, 91.0-98.7). The in vitro susceptibility of P. falciparum to artesunate increased significantly until 2002, but thereafter declined to levels close to those of 13 years ago (geometric mean in 2007: 4.2 nM/l; 95% CI, 3.2-5.5). The proportion of infections caused by parasites with increased pfmdr1 copy number rose from 30% (12/ 40) in 1996 to 53% (24/45) in 2006 (p = 0.012, test for trend). Conclusion: Artesunate-mefloquine remains a highly efficacious antimalarial treatment in this area despite 13 years of widespread intense deployment, but there is evidence of a modest increase in resistance. Of particular concern is the slowing of parasitological response to artesunate and the associated increase in gametocyte carriage. © 2009 Carrara et al
    • …
    corecore