792 research outputs found

    Metamaterial Transmission Line and its Applications

    Get PDF

    Finding Influencers in Complex Networks: An Effective Deep Reinforcement Learning Approach

    Full text link
    Maximizing influences in complex networks is a practically important but computationally challenging task for social network analysis, due to its NP- hard nature. Most current approximation or heuristic methods either require tremendous human design efforts or achieve unsatisfying balances between effectiveness and efficiency. Recent machine learning attempts only focus on speed but lack performance enhancement. In this paper, different from previous attempts, we propose an effective deep reinforcement learning model that achieves superior performances over traditional best influence maximization algorithms. Specifically, we design an end-to-end learning framework that combines graph neural network as the encoder and reinforcement learning as the decoder, named DREIM. Trough extensive training on small synthetic graphs, DREIM outperforms the state-of-the-art baseline methods on very large synthetic and real-world networks on solution quality, and we also empirically show its linear scalability with regard to the network size, which demonstrates its superiority in solving this problem

    Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

    Get PDF
    A UWB E-plane omnidirectional microwave antenna is designed and fabricated for IEEE 802.11a communication system and microwave magnetron source system as a radiation monitor. A cooptimization method based on particle swarm optimization (PSO) algorithm and FDTD software is presented. The presented PSO algorithm is useful in many industrial microwave applications, such as microwave magnetron design and other techniques with a high power level. The maximum measured relative bandwidth of 65% is achieved for the proposed antenna after a rapid and efficient optimization. Furthermore, the measured antenna polarization purity reaches about 20 dB at the communication C band. The PSO algorithm is a powerful candidate for microwave passive component design

    Optimal Energy Consumption Analysis of Natural Gas Pipeline

    Get PDF
    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent

    A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems

    Get PDF
    Purpose: A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems (JSP) is proposed. Design/methodology/approach: In the algorithm, a number of sub-problems are constructed by iteratively decomposing the large-scale JSP according to the process route of each job. And then the solution of the large-scale JSP can be obtained by iteratively solving the sub-problems. In order to improve the sub-problems' solving efficiency and the solution quality, a detection method for multi-bottleneck machines based on critical path is proposed. Therewith the unscheduled operations can be decomposed into bottleneck operations and non-bottleneck operations. According to the principle of “Bottleneck leads the performance of the whole manufacturing system” in TOC (Theory Of Constraints), the bottleneck operations are scheduled by genetic algorithm for high solution quality, and the non-bottleneck operations are scheduled by dispatching rules for the improvement of the solving efficiency. Findings: In the process of the subproblems' construction, partial operations in the previous scheduled sub-problem are divided into the successive sub-problem for re-optimization. This strategy can improve the solution quality of the algorithm. In the process of solving the sub problems, the strategy that evaluating the chromosome's fitness by predicting the global scheduling objective value can improve the solution quality. Research limitations/implications: In this research, there are some assumptions which reduce the complexity of the large-scale scheduling problem. They are as follows: The processing route of each job is predetermined, and the processing time of each operation is fixed. There is no machine breakdown, and no preemption of the operations is allowed. The assumptions should be considered if the algorithm is used in the actual job shop. Originality/value: The research provides an efficient scheduling method for the large-scale job shops, and will be helpful for the discrete manufacturing industry for improving the production efficiency and effectiveness.Peer Reviewe

    A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems

    Get PDF
    Purpose: A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems (JSP) is proposed. Design/methodology/approach: In the algorithm, a number of sub-problems are constructed by iteratively decomposing the large-scale JSP according to the process route of each job. And then the solution of the large-scale JSP can be obtained by iteratively solving the sub-problems. In order to improve the sub-problems' solving efficiency and the solution quality, a detection method for multi-bottleneck machines based on critical path is proposed. Therewith the unscheduled operations can be decomposed into bottleneck operations and non-bottleneck operations. According to the principle of “Bottleneck leads the performance of the whole manufacturing system” in TOC (Theory Of Constraints), the bottleneck operations are scheduled by genetic algorithm for high solution quality, and the non-bottleneck operations are scheduled by dispatching rules for the improvement of the solving efficiency. Findings: In the process of the subproblems' construction, partial operations in the previous scheduled sub-problem are divided into the successive sub-problem for re-optimization. This strategy can improve the solution quality of the algorithm. In the process of solving the sub problems, the strategy that evaluating the chromosome's fitness by predicting the global scheduling objective value can improve the solution quality. Research limitations/implications: In this research, there are some assumptions which reduce the complexity of the large-scale scheduling problem. They are as follows: The processing route of each job is predetermined, and the processing time of each operation is fixed. There is no machine breakdown, and no preemption of the operations is allowed. The assumptions should be considered if the algorithm is used in the actual job shop. Originality/value: The research provides an efficient scheduling method for the large-scale job shops, and will be helpful for the discrete manufacturing industry for improving the production efficiency and effectiveness.Peer Reviewe
    • …
    corecore