37,395 research outputs found
Energy Efficiency and Emission Testing for Connected and Automated Vehicles Using Real-World Driving Data
By using the onboard sensing and external connectivity technology, connected
and automated vehicles (CAV) could lead to improved energy efficiency, better
routing, and lower traffic congestion. With the rapid development of the
technology and adaptation of CAV, it is more critical to develop the universal
evaluation method and the testing standard which could evaluate the impacts on
energy consumption and environmental pollution of CAV fairly, especially under
the various traffic conditions. In this paper, we proposed a new method and
framework to evaluate the energy efficiency and emission of the vehicle based
on the unsupervised learning methods. Both the real-world driving data of the
evaluated vehicle and the large naturalistic driving dataset are used to
perform the driving primitive analysis and coupling. Then the linear weighted
estimation method could be used to calculate the testing result of the
evaluated vehicle. The results show that this method can successfully identify
the typical driving primitives. The couples of the driving primitives from the
evaluated vehicle and the typical driving primitives from the large real-world
driving dataset coincide with each other very well. This new method could
enhance the standard development of the energy efficiency and emission testing
of CAV and other off-cycle credits
Nuclear Physics on the Light Front
High energy scattering experiments involving nuclei are typically analyzed in
terms of light front variables. The desire to provide realistic, relativistic
wave functions expressed in terms of these variables led me to try to use light
front dynamics to compute nuclear wave functions. The progress is summarized
here.Comment: 4 pages, text of presentation made at PANIC9
- …