4 research outputs found

    EVALUATION OF IN VITRO ANTICANCER AND ANTIOXIDANT ACTIVITIES FROM LEAF EXTRACTS OF MEDICINAL PLANT CLIDEMIA HIRTA

    Get PDF
    Objective: To evaluate the anticancer and antioxidant activity of medicinal plant Clidemia hirta extracted in different solvents.Methods: Crude extracts were prepared from the leaves of Clidemia hirta using ethanol, petroleum ether and chloroform solvents. Anticancer activities and antioxidant properties were assayed using standard yellow dye 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and 1, 1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging assay respectively.Results: We found that the ethanol extract had higher inhibition activities against Dalton's lymphoma ascites (DLA) cancer cell line, 50% DLA cell line inhibition at 68µg/ml, while 50% inhibition by petroleum ether and chloroform extracts were at 160µg/ml and 172µg/ml, respectively. The antioxidant activity requires5µg/ml of ethanol extract to trap 50% of DPPH (IC50), whereas the positive control ascorbic acid trapped 50% of DPPH (IC50) at 3.5µg/ml.Conclusion: The prepared leaf extracts with different solvents of Clidemia hirta showed the antiproliferative and antioxidant activity in dose-dependent manner. Further works is required to identify the biologically active chemical constituents, responsible for cancer cell growth inhibition from this plant

    Rhizobacteriome: Plant Growth - Promoting Traits and Its Functional Mechanism in Plant Growth, Development, and Defenses

    No full text
    The rhizomicrobiome comprises a wide variety of microorganisms that are essential for microbial colonization and root development in a wide variety of plants. A plant’s growth, development, and defense mechanisms would be impossible without the rhizomicrobiome’s microbes. In order to develop and operate properly, roots are essential to plants because they give structural support and aid in the intake of water and nutrients. This rhizobacteriome, a diverse bacterial population with particular roles that affect plant health, may be found in plant root exudates due to the complex variety of elements present. There are several metabolites produced by the plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere near the plant roots that stimulate the plant’s development. Many PGPRs have the ability to solubilize phosphate, fix N2, produce biosynthesis of hydrolytic enzymes (hydrolase), produce phytohormones (phytoestrogens), produce siderophores (antibiotics), and more. Climate change, population growth, and the use of herbicides and insecticides have all had a significant influence on crop productivity in recent decades. Studies show that PGPR can boost plant growth and yield in a variety of species. As a result, PGPR dynamic microorganisms can be used as biofertilizers or biopesticides in agricultural techniques, which is critical to alleviating the urgent call for sustainable production. Rhizobacteriome, in particular PGPR found in the rhizosphere, and their many strategies for enhancing plant production are summarized in this chapter
    corecore