63,378 research outputs found

    Heralded magnetism in non-Hermitian atomic systems

    Full text link
    Quantum phase transitions are usually studied in terms of Hermitian Hamiltonians. However, cold-atom experiments are intrinsically non-Hermitian due to spontaneous decay. Here, we show that non-Hermitian systems exhibit quantum phase transitions that are beyond the paradigm of Hermitian physics. We consider the non-Hermitian XY model, which can be implemented using three-level atoms with spontaneous decay. We exactly solve the model in one dimension and show that there is a quantum phase transition from short-range order to quasi-long-range order despite the absence of a continuous symmetry in the Hamiltonian. The ordered phase has a frustrated spin pattern. The critical exponent ν\nu can be 1 or 1/2. Our results can be seen experimentally with trapped ions, cavity QED, and atoms in optical lattices.Comment: 7 pages + appendi

    Structures and proton-pumping strategies of mitochondrial respiratory enzymes

    Get PDF
    Enzymes of the mitochondrial respiratory chain serve as proton pumps, using the energy made available from electron transfer reactions to transport protons across the inner mitochondrial membrane and create an electrochemical gradient used for the production of ATP. The ATP synthase enzyme is reversible and can also serve as a proton pump by coupling ATP hydrolysis to proton translocation. Each of the respiratory enzymes uses a different strategy for performing proton pumping. In this work, the strategies are described and the structural bases for the action of these proteins are discussed in light of recent crystal structures of several respiratory enzymes. The mechanisms and efficiency of proton translocation are also analyzed in terms of the thermodynamics of the substrate transformations catalyzed by these enzymes

    Identity, environment and mental wellbeing in the veterinary profession

    Get PDF
    Mental health and career dissatisfaction are of increasing concern to the veterinary profession. The influence of identity on the psychological wellbeing of veterinarians has not been widely explored. Twelve recent veterinary graduates were enrolled in a private social media discussion group, and their identities investigated through narrative inquiry: a methodology which enables identity priorities to be extrapolated from stories of experience. Two distinct variants of the veterinary identity were identified: an academic, ‘diagnosis-focused’ identity, which prioritised definitive diagnosis and best-evidence treatment; and a broader ‘challenge-focused’ identity, where priorities additionally included engaging with the client, challenging environment or veterinary business. Contextual challenges (such as a client with limited finances or difficult interpersonal interactions) were seen as a source of frustration for those with a diagnosis-focused identity, as they obstructed the realisation of identity goals. Overcoming these challenges provided satisfaction to those with a challenge-focused identity. The employment environment of the graduates (general veterinary practice) provided more opportunities for those with a challenge-focused identity to realise identity goals, and more markers of emotional wellbeing were apparent in their stories. Markers of poor emotional health were evident in the stories of those with a diagnosis-focused identity

    Domain interactions within Fzo1 oligomers are essential for mitochondrial fusion

    Get PDF
    Mitofusins are conserved GTPases essential for the fusion of mitochondria. These mitochondrial outer membrane proteins contain a GTPase domain and two or three regions with hydrophobic heptad repeats, but little is known about how these domains interact to mediate mitochondrial fusion. To address this issue, we have analyzed the yeast mitofusin Fzo1p and find that mutation of any of the three heptad repeat regions (HRN, HR1, and HR2) leads to a null allele. Specific pairs of null alleles show robust complementation, indicating that functional domains need not exist on the same molecule. Biochemical analysis indicates that this complementation is due to Fzo1p oligomerization mediated by multiple domain interactions. Moreover, we find that two non-overlapping protein fragments, one consisting of HRN/GTPase and the other consisting of HR1/HR2, can form a complex that reconstitutes Fzo1p fusion activity. Each of the null alleles disrupts the interaction of these two fragments, suggesting that we have identified a key interaction involving the GTPase domain and heptad repeats essential for fusion

    Dynamics of a Rydberg hydrogen atom near a topologically insulating surface

    Full text link
    We investigate the classical dynamics of a Rydberg hydrogen atom near the surface of a planar topological insulator. The system is described by a Hamiltonian consisting of the free-hydrogen part and the hydrogen-surface potential. The latter includes the interactions between the electron and both image electric charges and image magnetic monopoles. Owing to the axial symmetry, the zz component of angular momentum lzl_{z} is conserved. Here we consider the lz=0l_{z} = 0 case. The structure of the phase space is explored extensively by means of numerical techniques and Poincar\'{e} surfaces of section for the recently discovered topological insulator TlBiSe2_{2}. The phase space of the system is separated into regions of vibrational and rotational motion. We show that vibrational-rotational-vibrational type transitions can be tuned with the topological magnetoelectric polarizability.Comment: Accepted for publication in Europhysics Letter
    corecore