9 research outputs found

    Ethylene and Anti-Ethylene Treatment Effects on Cut "First Red" Rose

    Get PDF
    Studies were conducted to determine the effects of ethylene and anti-ethylene treatments on postharvest life of cut "First Red" rose flowers. Effects of exogenous ethylene at 1, 10 and 100 ul l-1 for 48 h at 22 C on cut "First Red" rose flowers were investigated. Ethylene at different concentrations reduced postharvest life, with 100 ul l-1 having the greatest effect. Ethylene production measurements suggested that "First Red" rose is climacteric during senescence. Pre-treatment of "First Red" rose flowers with 0.5 mM silver thiosulfate (STS) for 2 h at 22 C increased vase life, but pre-treatment with 1 ul l-1 1- methylcyclopropene (1-MCP) did not. Pre-treatment of "First Red" rose with 0.5 mM STS and, to a lesser extent, 1 ul l-1 1-MCP for 2 h at 22 C, protected flowers from subsequent exposure to 10 ul l-1 ethylene. Maximum vase life in both ethylene-treated and non-ethylene-treated "First Red" rose flowers was obtained with 0.5 mM STS

    Optimization of Callus Induction and Regeneration in Two Fenugreek Landraces as a Medicinal Plant during in vitro Condition

    No full text
    Introduction: Fenugreek (Trigonella foenum- graecum) is a medicinal plant extensively distributed in most regions of the world. Fenugreek is an annual plant from the family of papilionaceae, leguminosae. Fenugreek leaves and seeds have been used extensively to prepare extracts and powders for medicinal uses. Its root, leaf and seed contain a number of important medicinal compounds such as polysaccharide, galactomannan, different saponins such as diosgenin, yamogenin, mucilage, volatile oil and alkaloids such as choline and trigonelline. Plant tissue culture is fundamental to most aspects of biotechnology of plants. Establishment of an efficient callus induction and direct regeneration protocol is an essential prerequisite in harnessing the advantage of cell and tissue culture for genetic improvement. For the successful application of the tissue culture technique in plant breeding, callus induction and plant regeneration potential of each plant must be determined. The present study was performed in order to determine the optimum concentration of plant growth regulators (IBA + TDZ) for producing of in vitro plantlet using cotyledon and hypocotyl as an explant for two different Iranian genotypes (Ardestani and Neyshabouri). Materials and Methods: In this investigation, Ardestani and Neyshabouri genotypes were used for callus induction and direct shoot regeneration. The medium used in this investigation was MS (Murashige and Skoog) basal medium. Then seeds were germinated on MS medium. For callus induction and direct shoot regeneration, cotyledon and hypocotyl explants were excised from 8-day-old sterile seedlings and cultured on MS medium containing various concentrations of IBA and TDZ. In this experiment, two combinations (TDZ + IBA) were used. In the first composition, IBA had four levels (0, 0.1, 0.3, 0.5 mg l-1) and TDZ had five levels (0, 0.2, 0.4, 0.6, 0.8 mg l-1) and in the second composition, IBA had four levels (0, 0.05, 0.1, 0.15 mg l-1) and TDZ had seven levels (0, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 mg l-1).The experimental designs were factorial based on completely randomized design with four replications. Cultures were incubated at 25° C ± 2 with a 16/8 hour (day/night) photoperiod and an irradiance of 1500 LUX using Sylvania cool white fluorescent tubes. The percentage of callus induction, direct shoot regeneration and average weight of callus were calculated for cotyledon and hypocotyl explants. All Data were analyzed using SPSS16, and mean comparisons were performed with duncan’s multiple range test (P < 0.05). Results and Discussion: According to our results, explants cultured on MS basal medium without plant growth regulators (control) produced no callus. However, after two weeks, callus formed in both of Ardestani and Neyshabouri genotypes from cotyledon and hypocotyl explants in the presence of IBA + TDZ plant growth regulators in most of the combinations. In hypocotyl explants of Neyshabouri genotype, the highest callus induction was obtained from the medium containing 0.15 mg l-1 IBA + 0.45 mg l-1 TDZ (96.87%). Various important factors such as genotype, source of explants and plant growth regulators significantly influence direct regeneration. Direct regeneration was obtained from hypocotyl explants for Neyshabouri genotype in combination IBA + TDZ. The highest percentage of direct shoot regeneration was observed in MS medium containing 0.05 mg l-1 IBA + 0.35 mg l-1 TDZ in hypocotyl explants of Neyshabouri genotype (37.5%). Direct shoot regeneration requires plant cells to undergo dedifferentiation which is known to be affected by not only exogenous plant growth regulators but also endogenous content of the hormones. Different tissues may have different levels of endogenous hormones and, therefore, the type of explant source would have a critical impact on the regeneration success. In our study, when cotyledon and hypocotyl explants were compared, it was clear that hypocotyl explants were much more productive for direct shoot regeneration than cotyledon explants. Conclusions: Callus induction and direct shoot regeneration are as in vitro tissue culture methods. Plant growth regulators and types of explant and genotype are the most important factors for callus induction and direct shoot regeneration phases. Therefore, optimization of these factors is essential to establish a high frequency of callus induction, direct shoot regeneration and gene transferring to this plant. According to the results of this investigation, it is recommended to apply plant growth regulators that were used in this study for other landraces of fenugreek cultured in Iran and select the best genotypes in response to tissue culture conditions for using in future studies

    Effect of Plant Growth Regulators on Callogenesis and Regeneration Of Fritillaria imperialis L

    No full text
    Introduction: Crown imperial (Fritillariaimperialis L.) is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resources is in danger of extinction, because of grazing livestock and pest outbreaks. However, due to slow reproduction in natural conditions and traditional multiplication methods such as scaling and Bulb division, many species of this genus are endangered. Using of biotechnology, namely in vitro plant propagation, is a solution to the problems of reproduction of rare and endangered plant species with difficult propagation and mass production of valuable genotypes. Therefore, micropropagation of F. imperialis through in vitro regeneration is essential for conservation and commercial production. Material and Methods: The bulbs of F. imperialis in dormancy stage obtained from Ilam mountainous regions in Iran and theywere placed in wet vermiculite at 4 °C for 4-6 weeks. Then, Bulbs were surface-sterilized with 70% ethanol for 60s followed by immersion in 5% (v/v) NaOCl solution for 20min with gentle agitation, and they rinsed three times in sterile double distilled water. Explants prepared from the lower third of scales with basal plate and were placed in MS basal medium supplemented with different concentrations of NAA and 2,4-D for callus induction. Test tubes with bulb segments were maintained within 25±2°C in growth chamber at 16 hours light period by the illumination from white florescent tube light and 8 hours dark. After two months callus were transferred to MS basal medium without PGRs. Then, callus excised to 0.5 cm pieces and were transferred to MS basal medium supplemented with NAA in 0, 0.3 and 1 mg/l concentration.Three types of cytokinins with different concentrations were arranged in three seperated experiments. Thefirst experiment medium contained NAA with BA (0, 0.3, 0.5 and 1 mg/l), the second experiment NAA combined with 0, 0.1, 0.3 and 0.5 mg/l TDZ and the third experiment MS basal medium included NAA with Kin (0, 0.5, 1 and 1.5 mg/l). After three months, percentage of callogenesis, diameter of calli, percentage of regeneration, number of leaves and roots and length of leaves and roots were measured. This experiment were carried out in completely randomized design with 4 replications. Results and Discussion: In the first experiment application of NAA and BA on in-vitro multiplication of F. imperialis were evaluated. Highest callogenesis and formation (100 %) was observed in mediums contained 0.3 mg/l NAA + 1 mg/l BA, 0.6 mg/l NAA + (0.3, 0.5 and 1 mg/l) BA. Also, callogenesis was obtained in medium contained 0.5 mg/l BA without NAA. This result showed that only in medium supplemented with 1 mg/l BA provided highest (100%) callogenesis, when NAA concentrations were low. However, high levels of NAA (0.6 mg/l) in all concentrations of BA were obtained maximum callogenesis. We concluded that NAA is essential for callogenesis and enhancing its levels can increase callogenesis. Also, application of low levels of BA (0.4 µM) in callogenesis mediums of Cynodon dactylon contained Auxins resulted in increment of embryogenetic calli formation. In the other hand, presence of BA is essential for plantlet regeneration, however NAA is not necessary. Plantlet regeneration was obtained in PGRs free medium. Statistical analysis of results showed that different concentrations of BA and NAA had significant effects on percentage of callogenesis, diameter of calli, percentage of regeneration, length of leaves and roots (

    Karyological Characteristics of Lilium ledebourii Boiss and Lilium longiflorum Thunb.

    Get PDF
    The karyological characteristics of two Lilium species were investigated by aceto-ferric-hematoxylin staining. Chromosome characteristics, including the number and length of the chromosomes, length of their long and short arms, length of the total set of chromosomes, the arm ratio index and relative lengths of chromosome, were measured based on averages for five different metaphase cells. Both species are diploid (2n=2x=24). The karyotype of Lilium ledebourii consisted of 1 pair of metacentric, 4 pairs of submetacentric, 3 pairs of acrocentric and 4 pairs of subtelocentric chromosomes. The karyotype of Lilium longiflorum was comprised of 1 pair of metacentric, 4 pairs of acrocentric and 7 pairs of subtelocentric chromosomes. Chromosomes 5 and 7 in Lilium ledebourii and chromosomes 6 in Lilium longiflorum had a satellite. Karyotypes were classified as 3A by Stebbins classification

    Karyological characteristics of Lilium ledebourii Boiss and Lilium longiflorum thunb

    Get PDF
    The karyological characteristics of two Lilium species were investigated by acetoferric hematoxylin staining. Chromosome characteristics, including the number and length of the chromosomes, length of their long and short arms, length of the total set of chromosomes, the arm ratio index and relative lengths of chromosome, were measured based on averages for five different metaphase cells. Both species are diploid (2n=2x=24). The karyotype of Lilium ledebourii consisted of 1 pair of metacentric, 4 pairs of submetacentric, 3 pairs of acrocentric and 4 pairs of subtelocentric chromosomes. The karyotype of Lilium longiflorum was comprised of 1 pair of metacentric, 4 pairs of acrocentric and 7 pairs of subtelocentric chromosomes. Chromosomes 5 and 7 in Lilium ledebourii and chromosomes 6 in Lilium longiflorum had a satellite. Karyotypes were classified as 3A by Stebbins classification

    Effect of Different Cellulase and Pectinase Enzyme Treatments on Protoplast Isolation and Viability in Lilium ledebeourii Bioss.

    No full text
    For overcoming interspecific incompatibility, protoplast combination method is a proper procedure for making a new plant withdesired traits. For this purpose, protoplast preparation is a first and important step. Hence, experiments were conducted to evaluatevarious combinations of cellulose, pectinase and their treatment times on protoplast production and protoplast viability in Liliumledebeourii Bioss. The results of experiment revealed that the protoplast yield was significantly affected by different treatment levels.Cellulase at 4% gave the highest numbers of protoplasts at 3.71×105 protoplast/g FW. Pectinase at 1% gave the highest numbers ofprotoplast. For treatment times, the highest yield of protoplast was with leaf explants treated for 24 h. Analysis of variance indicated thatconcentration, time and three-way interaction of cellulase, pectinase and time were significant at p&lt;0.01. Cellulase at 4% and pectinase at0.2% for 24 h gave the highest viability. Interactions of cellulase × pectinase, cellulase × time, pectinase × time and cellulase × pectinase× treatment time were significant at P≤0.05 for protoplast number. The highest and lowest protoplast numbers were produced in mediacontaining 4% cellulase and 1% pectinase for 24 h (6.65×105 protoplast/g FW) and 1% cellulase and 0.2% pectinase for 12 h, respectively.It’s concluded that, the best treatment for isolation of Lilium protoplast was 4% cellulase and 1% pectinase for 24 h
    corecore