2 research outputs found

    Catalytic Ozonation using Iron-Doped Water Treatment Sludge as a Catalyst for Treatment of Phenol in Synthetic Wastewater

    Get PDF
    In this study, iron (Fe)-doped water treatment sludge, designated as Fe/WTS, was prepared by a hydrothermal method using phosphoric acid and impregnation with ferric nitrate. The results from X-ray diffraction (XRD) confirmed the presence of Fe loaded on the WTS support, while Brunauer-Emmett-Teller (BET) analysis indicated an increase of specific surface area of the WTS from 37.37 m2/g to 118.51 m2/g after acid modification. The Fe/WTS was successfully used as a catalyst in catalytic ozonation for degradation of phenol in synthetic wastewater. Factors affecting phenol removal efficiency including reaction time, pH, catalyst dosage, and Fe content were investigated. At the optimum condition, i.e., reaction time of 120 min, pH of 11, catalyst dosage of 1 g/L, and Fe content of 2% (w/w), the removal efficiency of phenol was 99.16% which was higher than that of sole ozonation (44.61%). The results of kinetic analyses indicated that the reactions of catalytic ozonation in the presence of Fe/WTS and WTS catalysts followed pseudo-first order kinetic model with rate constants of 0.0362 and 0.0065 min-1, respectively, while that of sole ozone was 0.0046 min-1. This finding presented the potential use of Fe/WTS as a novel catalyst for catalytic ozonation

    āļœāļĨāļāļĢāļ°āļ—āļšāļˆāļēāļāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļŦāļĄāļ·āļ­āļ‡āđāļĢāđˆāļ•āđˆāļ­āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļŠāļ āļēāļžāļ—āļĩāđˆāļ”āļīāļ™āļˆāļēāļāļāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āđ‚āļĨāļŦāļ°āļŦāļ™āļąāļāđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ•āđˆāļ­āļŠāļļāļ‚āļ āļēāļžāļˆāļēāļāļœāļĨāļœāļĨāļīāļ•āļ‚āđ‰āļēāļ§āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™ Impact of Mining Industry on Agricultural Land Degradation from Heavy Metal Contamination and Health Risk Assess

    No full text
    āļāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āđ‚āļĨāļŦāļ°āļŦāļ™āļąāļāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ€āļāļĐāļ•āļĢāļāļĢāļĢāļĄāļ­āļąāļ™āđ€āļ™āļ·āđˆāļ­āļ‡āļĄāļēāļˆāļēāļāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļŦāļĄāļ·āļ­āļ‡āđāļĢāđˆāļˆāļąāļ”āđ€āļ›āđ‡āļ™āļ āļąāļĒāļ„āļļāļāļ„āļēāļĄāļ”āđ‰āļēāļ™āļ„āļ§āļēāļĄāļ›āļĨāļ­āļ”āļ āļąāļĒāļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāļāđˆāļ­āđƒāļŦāđ‰āđ€āļāļīāļ”āļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ•āđˆāļ­āļŠāļļāļ‚āļ āļēāļžāļ‚āļ­āļ‡āļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļžāļąāļ’āļ™āļēāļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļŠāļ āļēāļžāļĄāļĨāļžāļīāļĐāļ”āļīāļ™āļ‚āļ­āļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ€āļāļĐāļ•āļĢāļāļĢāļĢāļĄāđāļšāļšāļĢāļēāļĒāđāļ›āļĨāļ‡āđāļĨāļ°āđāļšāļšāļ āļēāļžāļĢāļ§āļĄ āđ‚āļ”āļĒāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāđ€āļŠāļīāļ‡āļ˜āļĢāļ“āļĩāđ€āļ„āļĄāļĩāļ‚āļ­āļ‡ As  Cd  Cu Pb  āđāļĨāļ° Zn āđƒāļ™āļ”āļīāļ™āđāļĨāļ°āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ•āđˆāļ­āļŠāļļāļ‚āļ āļēāļžāļˆāļēāļāļāļēāļĢāļšāļĢāļīāđ‚āļ āļ„āļ‚āđ‰āļēāļ§Â āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ”āļīāļ™āļĄāļĩāļāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āļ‚āļ­āļ‡ As Cd  Pb āđāļĨāļ° Zn āđāļĨāļ°āļžāļšāļœāļĨāļœāļĨāļīāļ•āļ‚āđ‰āļēāļ§āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļŠāļđāļ‡āļˆāļģāļ™āļ§āļ™ 6 āđāļ›āļĨāļ‡āļˆāļēāļ 11 āđāļ›āļĨāļ‡āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 55 āļœāļĨāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļŠāļ–āļīāļ•āļīāļŦāļĨāļēāļĒāļ•āļąāļ§āđāļ›āļĢāđ€āļžāļ·āđˆāļ­āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ āļēāļžāļĢāļ§āļĄāļ‚āļ­āļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļžāļšāļ§āđˆāļēāļ›āļĢāļīāļĄāļēāļ“āđ‚āļĨāļŦāļ°āļŦāļ™āļąāļāđƒāļ™āļ”āļīāļ™āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āļŠāļđāļ‡āđ€āļāļīāļ”āļˆāļēāļāļāļīāļˆāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļĄāļ™āļļāļĐāļĒāđŒÂ  āļŠāđˆāļ§āļ™āļāļēāļĢāļˆāļģāđāļ™āļāđāļ›āļĨāļ‡āļ™āļēāļ•āļēāļĄāļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ—āļēāļ‡āļ™āļīāđ€āļ§āļĻāļžāļšāļ§āđˆāļēāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ•āđˆāļ­āļŠāļļāļ‚āļ āļēāļžāļ‚āļ­āļ‡āļšāļĢāļīāđ‚āļ āļ„āļ‚āđ‰āļēāļ§āļˆāļēāļāļāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āļ‚āļ­āļ‡ As āđāļĨāļ° Cd āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļšāđˆāļ‡āļŠāļĩāđ‰āļ§āđˆāļēāļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļŠāļ āļēāļžāļĄāļĨāļžāļīāļĐāļ‚āļ­āļ‡āđāļ›āļĨāļ‡āļ™āļēāļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ„āļąāļ”āđ€āļĨāļ·āļ­āļāļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ€āļāļĐāļ•āļĢāļāļĢāļĢāļĄāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āđ‚āļĨāļŦāļ°āļŦāļ™āļąāļāļˆāļēāļāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļŦāļĄāļ·āļ­āļ‡āđāļĢāđˆāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžHeavy metal contamination in agricultural soils nearby the old mining industries has threatened food safety for human health. This research aimed to develop a new methodology for soil pollution assessment of individual and holistic agricultural areas. Geochemical index of heavy metals including As, Cd, Cu, Pb, and Zn, in selected paddy fields was evaluated together with health risk assessment of those heavy metals in rice grains. The results showed that soil in the studied areas was contaminated with As, Cd, Pb, and Zn. Rice harvested from 6 out of 11 paddy fields, corresponding to 55%, employed health risk at a high level. Multivariate analysis indicated that anthropogenic activity was a major source of soil pollution in a highly contaminated area. The classification of paddy fields based on potential ecological risk index (RI) was found to be related to the health risk assessment of As and Cd contaminating in rice grains. It was concluded that the proposed soil pollution assessment method was efficiently used to identify suitable agricultural areas in heavy metal contaminated zones adjacent to the old mining industries for safe rice crops.Keywordsāļ”āļąāļŠāļ™āļĩāļāļēāļĢāļŠāļ°āļŠāļĄāđ€āļŠāļīāļ‡āļ˜āļĢāļ“āļĩ; āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ•āđˆāļ­āļŠāļļāļ‚āļ āļēāļž; āđ‚āļĨāļŦāļ°āļŦāļ™āļąāļ; āļĄāļĨāļžāļīāļĐāļ—āļēāļ‡āļ”āļīāļ™Geo-accumulation index; Health risk assessment; Heavy metals; Soil pollutio
    corecore