8 research outputs found

    Understanding Genomic Evolution of Olfactory Receptors through Fractal and Mathematical Morphology

    Get PDF
    Fractals and Mathematical Morphology are immensely used to study many problems in different branches of science and technology including the domain of Biology. There are many more unrevealed facts and figures of genes and genome in Computational Biology. In this paper, our objective is to explore how the evolutionary network is associated among Human, Chimpanzee and Mouse with regards to their genomic information. We are about to explore their genomic evolution through the quantitative measures of fractals and morphology. We have considered olfactory receptors for our case study. These olfactory receptors do function in different species with subtle differences in the structures of DNA sequences. Those subtle differences can be exposed through intricate details of Fractals and Mathematical Morphology

    Automated peer-to-peer negotiation for energy contract settlements in residential cooperatives

    Get PDF
    This paper presents an automated peer-to-peer negotiation strategy for settling energy contracts among prosumers in a Residential Energy Cooperative considering heterogeneity prosumer preferences. The heterogeneity arises from prosumers' evaluation of energy contracts through multiple societal and environmental criteria and the prosumers' private preferences over those criteria. The prosumers engage in bilateral negotiations with peers to mutually agree on periodical energy contracts/loans consisting of the energy volume to be exchanged at that period and the return time of the exchanged energy. The negotiating prosumers navigate through a common negotiation domain consisting of potential energy contracts and evaluate those contracts from their valuations on the entailed criteria against a utility function that is robust against generation and demand uncertainty. From the repeated interactions, a prosumer gradually learns about the compatibility of its peers in reaching energy contracts that are closer to Nash solutions. Empirical evaluation on real demand, generation and storage profiles – in multiple system scales – illustrates that the proposed negotiation based strategy can increase the system efficiency (measured by utilitarian social welfare) and fairness (measured by Nash social welfare) over a baseline strategy and an individual flexibility control strategy representing the status quo strategy. We thus elicit system benefits from peer-to-peer flexibility exchange already without any central coordination and market operator, providing a simple yet flexible and effective paradigm that complements existing markets

    On analog quantum algorithms for the mixing of Markov chains

    Full text link
    The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd\"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.Comment: The section concerning time-averaged mixing (Sec VIII) has been updated: Now contains numerical plots and an intuitive discussion on the random matrix theory results used to derive the results of arXiv:2001.0630

    Efficient transactive control for energy storage management system in prosumer-centric networked microgrids

    No full text
    This paper presents a transactive control (TC) mechanism for the management of battery energy storage systems (BESS) in residential networked microgrids (MGs) that contain loads, electric vehicles (EVs), and rooftop solar photovoltaic systems (PV). The goals of the TC are to maximize the savings of consumers and prosumers and to reduce peak load on local transformers. This is accomplished by utilizing local hybrid PV-BESS resources from prosumer community groups (PCGs), which are scheduled to offset peak loads. A model predictive control (MPC) based method is utilized to optimize the BESS scheduling. In the proposed TC, the PCGs are incentivized by the distribution system operator (DSO) through a dynamic price signal that is being updated hourly based on the MG local conditions. To evaluate the proposed TC, case studies are conducted on residential MGs located in an IEEE 33-bus test system. The evaluation indicates that the proposed TC can improve the savings of prosumers/consumers, reduce peak demand caused by EV charging in the distribution networks, and is able to alleviate undesired grid effects, e.g., transformer overloads
    corecore