4 research outputs found

    Searching Transferable Mixed-Precision Quantization Policy through Large Margin Regularization

    Full text link
    Mixed-precision quantization (MPQ) suffers from time-consuming policy search process (i.e., the bit-width assignment for each layer) on large-scale datasets (e.g., ISLVRC-2012), which heavily limits its practicability in real-world deployment scenarios. In this paper, we propose to search the effective MPQ policy by using a small proxy dataset for the model trained on a large-scale one. It breaks the routine that requires a consistent dataset at model training and MPQ policy search time, which can improve the MPQ searching efficiency significantly. However, the discrepant data distributions bring difficulties in searching for such a transferable MPQ policy. Motivated by the observation that quantization narrows the class margin and blurs the decision boundary, we search the policy that guarantees a general and dataset-independent property: discriminability of feature representations. Namely, we seek the policy that can robustly keep the intra-class compactness and inter-class separation. Our method offers several advantages, i.e., high proxy data utilization, no extra hyper-parameter tuning for approximating the relationship between full-precision and quantized model and high searching efficiency. We search high-quality MPQ policies with the proxy dataset that has only 4% of the data scale compared to the large-scale target dataset, achieving the same accuracy as searching directly on the latter, and improving the MPQ searching efficiency by up to 300 times

    Semantic-Sparse Colorization Network for Deep Exemplar-based Colorization

    Full text link
    Exemplar-based colorization approaches rely on reference image to provide plausible colors for target gray-scale image. The key and difficulty of exemplar-based colorization is to establish an accurate correspondence between these two images. Previous approaches have attempted to construct such a correspondence but are faced with two obstacles. First, using luminance channels for the calculation of correspondence is inaccurate. Second, the dense correspondence they built introduces wrong matching results and increases the computation burden. To address these two problems, we propose Semantic-Sparse Colorization Network (SSCN) to transfer both the global image style and detailed semantic-related colors to the gray-scale image in a coarse-to-fine manner. Our network can perfectly balance the global and local colors while alleviating the ambiguous matching problem. Experiments show that our method outperforms existing methods in both quantitative and qualitative evaluation and achieves state-of-the-art performance.Comment: Accepted by ECCV2022; 14 pages, 10 figure

    REALY: Rethinking the Evaluation of 3D Face Reconstruction

    No full text
    The evaluation of 3D face reconstruction results typically relies on a rigid shape alignment between the estimated 3D model and the ground-truth scan. We observe that aligning two shapes with different reference points can largely affect the evaluation results. This poses difficulties for precisely diagnosing and improving a 3D face reconstruction method. In this paper, we propose a novel evaluation approach with a new benchmark REALY, consists of 100 globally aligned face scans with accurate facial keypoints, high-quality region masks, and topology-consistent meshes. Our approach performs region-wise shape alignment and leads to more accurate, bidirectional correspondences during computing the shape errors. The fine-grained, region-wise evaluation results provide us detailed understandings about the performance of state-of-the-art 3D face reconstruction methods. For example, our experiments on single-image based reconstruction methods reveal that DECA performs the best on nose regions, while GANFit performs better on cheek regions. Besides, a new and high-quality 3DMM basis, HIFI3D ++, is further derived using the same procedure as we construct REALY to align and retopologize several 3D face datasets. We will release REALY, HIFI3D ++, and our new evaluation pipeline at https://realy3dface.com.</p
    corecore