36 research outputs found

    A study of the cc-C3HD\mathrm{C_{3}HD}/cc-C3H2\mathrm{C_{3}H_{2}} ratio in low-mass star forming regions

    Full text link
    We use the deuteration of cc-C3H2\mathrm{C_{3}H_{2}} to probe the physical parameters of starless and protostellar cores, related to their evolutionary states, and compare it to the N2H+\mathrm{N_{2}H^{+}}-deuteration in order to study possible differences between the deuteration of C- and N-bearing species. We observed the main species cc-C3H2\mathrm{C_{3}H_{2}}, the singly and doubly deuterated species cc-C3HD\mathrm{C_{3}HD} and cc-C3D2\mathrm{C_{3}D_{2}}, as well as the isotopologue cc-H13CC2H\mathrm{{H^{13}CC_{2}H}} toward 10 starless cores and 5 protostars in the Taurus and Perseus Complexes. We examined the correlation between the NN(cc-C3HD\mathrm{C_{3}HD})/NN(cc-C3H2\mathrm{C_{3}H_{2}}) ratio and the dust temperature along with the H2\mathrm{H_2} column density and the CO depletion factor. The resulting NN(cc-C3HD\mathrm{C_{3}HD})/NN(cc-C3H2\mathrm{C_{3}H_{2}}) ratio is within the error bars consistent with 10%10\% in all starless cores with detected cc-C3HD\mathrm{C_{3}HD}. This also accounts for the protostars except for the source HH211, where we measure a high deuteration level of 23%23\%. The deuteration of N2H+\mathrm{N_{2}H^{+}} follows the same trend but is considerably higher in the dynamically evolved core L1544. Toward the protostellar cores the coolest objects show the largest deuterium fraction in cc-C3H2\mathrm{C_{3}H_{2}}. We show that the deuteration of cc-C3H2\mathrm{C_{3}H_{2}} can trace the early phases of star formation and is comparable to that of N2H+\mathrm{N_{2}H^{+}}. However, the largest cc-C3H2\mathrm{C_{3}H_{2}} deuteration level is found toward protostellar cores, suggesting that while cc-C3H2\mathrm{C_{3}H_{2}} is mainly frozen onto dust grains in the central regions of starless cores, active deuteration is taking place on ice

    Search for grain growth towards the center of L1544

    Get PDF
    In dense and cold molecular clouds dust grains are surrounded by thick icy mantles. It is however not clear if dust growth and coagulation take place before the switch-on of a protostar. This is an important issue, as the presence of large grains may affect the chemical structure of dense cloud cores, including the dynamically important ionization fraction, and the future evolution of solids in protoplanetary disks. To study this further, we focus on L1544, one of the most centrally concentrated pre-stellar cores on the verge of star formation, and with a well-known physical structure. We observed L1544 at 1.2 and 2 mm using NIKA, a new receiver at the IRAM 30 m telescope, and we used data from the Herschel Space Observatory archive. We find no evidence of grain growth towards the center of L1544 at the available angular resolution. Therefore, we conclude that single dish observations do not allow us to investigate grain growth toward the pre-stellar core L1544 and high sensitivity interferometer observations are needed. We predict that dust grains can grow to 200 μ\mum in size toward the central ~300 au of L1544. This will imply a dust opacity change by a factor of ~2.5 at 1.2 mm, which can be detected using the Atacama Large Millimeter and submillimeter Array (ALMA) at different wavelengths and with an angular resolution of 2".Comment: 12 pages, 14 figures. Accepted for publication in A&

    A large (~1 pc) contracting envelope around the prestellar core L1544

    Full text link
    Prestellar cores, the birthplace of Sun-like stars, form from the fragmentation of the filamentary structure that composes molecular clouds, from which they must inherit at least partially the kinematics. Furthermore, when they are on the verge of gravitational collapse, they show signs of subsonic infall motions. How extended these motions are, which depends on how the collapse occurs, remains largely unknown. We want to investigate the kinematics of the envelope that surrounds the prototypical prestellar core L1544, studying the cloud-core connection. To our aims, we observed the HCO+\rm HCO^+(1-0) transition in a large map. \hcop is expected to be abundant in the envelope, making it an ideal probe of the large-scale kinematics in the source. We modelled the spectrum at the dust peak by means of a non local-thermodynamical-equilibrium radiative transfer. In order to reproduce the spectrum at the dust peak, a large (1pc\sim 1\, \rm pc) envelope is needed, with low density (tens of cm3\rm cm^{-3} at most) and contraction motions, with an inward velocity of 0.05kms1\approx 0.05\,\rm km \, s^{-1}. We fitted the data cube using the Hill5 model, which implements a simple model {for the optical depth and excitation temperature profiles along the line-of-sight,} in order to obtain a map of the infall velocity. This shows that the infall motions are extended, with typical values in the range 0.10.2kms10.1-0.2\,\rm km \, s^{-1}. Our results suggest that the contraction motions extend in the diffuse envelope surrounding the core, which is consistent with recent magnetic field measurements in the source, which showed that the envelope is magnetically supercritical.Comment: Accepted for publication on ApJ, 24 Oct. 202

    The Green Bank Ammonia Survey: Unveiling the Dynamics of the Barnard 59 star-forming Clump

    Get PDF
    Understanding the early stages of star formation is a research field of ongoing development, both theoretically and observationally. In this context, molecular data have been continuously providing observational constraints on the gas dynamics at different excitation conditions and depths in the sources. We have investigated the Barnard 59 core, the only active site of star formation in the Pipe Nebula, to achieve a comprehensive view of the kinematic properties of the source. These information were derived by simultaneously fitting ammonia inversion transition lines (1,1) and (2,2). Our analysis unveils the imprint of protostellar feedback, such as increasing line widths, temperature and turbulent motions in our molecular data. Combined with complementary observations of dust thermal emission, we estimate that the core is gravitationally bound following a virial analysis. If the core is not contracting, another source of internal pressure, most likely the magnetic field, is supporting it against gravitational collapse and limits its star formation efficiency.Comment: 18 pages, 18 figure

    The Green Bank Ammonia Survey (GAS): First Results of NH3 mapping the Gould Belt

    Full text link
    We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with AV7A_V \gtrsim 7 mag visible from the northern hemisphere in emission from NH3_3 and other key molecular tracers. This first release includes the data for four regions in Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH3_3 emission to dust continuum emission from Herschel, and find that the two tracers correspond closely. NH3_3 is present in over 60\% of lines-of-sight with AV7A_V \gtrsim 7 mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH3_3 is detected toward ~ 40\% of lines-of-sight with AV7A_V \gtrsim 7 mag. Moreover, we find that the NH3_3 emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH3_3 column densities through forward modeling of the hyperfine structure of the NH3_3 (1,1) and (2,2) lines. We show that the NH3_3 velocity dispersion, σv{\sigma}_v, and gas kinetic temperature, TKT_K, vary systematically between the regions included in this release, with an increase in both the mean value and spread of σv{\sigma}_v and TKT_K with increasing star formation activity. The data presented in this paper are publicly available.Comment: 33 pages, 27 figures, accepted to ApJS. Datasets are publicly available: https://dataverse.harvard.edu/dataverse/GAS_DR

    Transition from coherent cores to surrounding cloud in L1688

    Full text link
    Context. Stars form in cold dense cores showing subsonic velocity dispersions. The parental molecular clouds display higher temperatures and supersonic velocity dispersions. The transition from core to cloud has been observed in velocity dispersion, but temperature and abundance variations are unknown. Aims. We aim to measure the temperature and velocity dispersion across cores and ambient cloud in a single tracer to study the transition between the two regions. Methods. We use NH3 (1,1) and (2,2) maps in L1688 from the Green Bank Ammonia Survey, smoothed to 1′, and determine the physical properties by fitting the spectra. We identify the coherent cores and study the changes in temperature and velocity dispersion from the cores to the surrounding cloud. Results. We obtain a kinetic temperature map extending beyond dense cores and tracing the cloud, improving from previous maps tracing mostly the cores. The cloud is 4-6 K warmer than the cores, and shows a larger velocity dispersion (Δσv = 0.15-0.25 km s-1). Comparing to Herschel-based dust temperatures, we find that cores show kinetic temperatures that are ≈1.8 K lower than the dust temperature, while the gas temperature is higher than the dust temperature in the cloud. We find an average p-NH3 fractional abundance (with respect to H2) of (4.2 ± 0.2) × 10-9 towards the coherent cores, and (1.4 ± 0.1) × 10-9 outside the core boundaries. Using stacked spectra, we detect two components, one narrow and one broad, towards cores and their neighbourhoods. We find the turbulence in the narrow component to be correlated with the size of the structure (Pearson-r = 0.54). With these unresolved regional measurements, we obtain a turbulence-size relation of σv,NT ∝ r0.5, which is similar to previous findings using multiple tracers. Conclusions. We discover that the subsonic component extends up to 0.15 pc beyond the typical coherent boundaries, unveiling larger extents of the coherent cores and showing gradual transition to coherence over ∼0.2 pc. © S. Choudhury et al. 2021.Acknowledgemen. S.C., J.E.P., and P.C. acknowledge the support by the Max Planck Society. This material is based upon work supported by the Green Bank Observatory which is a major facility funded by the National Science Foundation operated by Associated Universities, Inc. A.C.-T. acknowledges the support from MINECO projects AYA2016-79006-P and PID2019-108765GB-I00. AP acknowledges the support from the Russian Ministry of Science and Higher Education via the State Assignment Project FEUZ-2020-0038. A.P. is a member of the Max Planck Partner Group at the Ural Federal University

    New reynolds equation for line contact based on the carreau model modification by bair

    Get PDF
    This paper presents a new form of the one-dimensional Reynolds equation for lubricants whose rheological behaviour follows a modified Carreau rheological model proposed by Bair. The results of the shear stress and flow rate obtained through a new Reynolds–Carreau equation are shown and compared with the results obtained by other researchers

    Linking the dust and chemical evolution: Taurus and Perseus -- New collisional rates for HCN, HNC, and their C, N, and H isotopologues

    Full text link
    HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. We perform an up-to-date gas and dust chemical characterization of two different star-forming regions, TMC 1-C and NGC 1333-C7, using new collisional rates of HCN, HNC, and their isotopologues. We investigated the possible effects of the environment and stellar feedback in their chemistry and their evolution. With millimeter observations, we derived their column densities, the C and N isotopic fractions, the isomeric ratios, and the deuterium fractionation. The continuum data at 3 mm and 850 μ\mum allowed us to compute the emissivity spectral index and look for grain growth as an evolutionary tracer. The H13^{13}CN/HN13^{13}C ratio is anticorrelated with the deuterium fraction of HCN, thus it can readily serve as a proxy for the temperature. The spectral index (β1.342.09)(\beta\sim 1.34-2.09) shows a tentative anticorrelation with the H13^{13}CN/HN13^{13}C ratio, suggesting grain growth in the evolved, hotter, and less deuterated sources. Unlike TMC 1-C, the south-to-north gradient in dust temperature and spectral index observed in NGC 1333-C7 suggests feedback from the main NGC 1333 cloud. With this up-to-date characterization of two star-forming regions, we found that the chemistry and the physical properties are tightly related. The dust temperature, deuterium fraction, and the spectral index are complementary evolutionary tracers. The large-scale environmental factors may dominate the chemistry and evolution in clustered star-forming regions.Comment: 25 pages, 20 figure

    A constant N2_2H+^+(1-0)-to-HCN(1-0) ratio on kiloparsec scales

    Get PDF
    Nitrogen hydrides such as NH3_3 and N2_2H+^+ are widely used by Galactic observers to trace the cold dense regions of the interstellar medium. In external galaxies, because of limited sensitivity, HCN has become the most common tracer of dense gas over large parts of galaxies. We provide the first systematic measurements of N2_2H+^+(1-0) across different environments of an external spiral galaxy, NGC6946. We find a strong correlation (r>0.98,p<0.01r>0.98,p<0.01) between the HCN(1-0) and N2_2H+^+(1-0) intensities across the inner 8kpc\sim8\mathrm{kpc} of the galaxy, at kiloparsec scales. This correlation is equally strong between the ratios N2_2H+^+(1-0)/CO(1-0) and HCN(1-0)/CO(1-0), tracers of dense gas fractions (fdensef_\mathrm{dense}). We measure an average intensity ratio of N2_2H+^+(1-0)/HCN(1-0)=0.15±0.02=0.15\pm0.02 over our set of five IRAM-30m pointings. These trends are further supported by existing measurements for Galactic and extragalactic sources. This narrow distribution in the average ratio suggests that the observed systematic trends found in kiloparsec-scale extragalactic studies of fdensef_\mathrm{dense} and the efficiency of dense gas (SFEdense_\mathrm{dense}) would not change if we employed N2_2H+^+(1-0) as a more direct tracer of dense gas. At kiloparsec scales our results indicate that the HCN(1-0) emission can be used to predict the expected N2_2H+^+(1-0) over those regions. Our results suggest that, even if HCN(1-0) and N2_2H+^+(1-0) trace different density regimes within molecular clouds, subcloud differences average out at kiloparsec scales, yielding the two tracers proportional to each other.Comment: Accepted for publication in Astronomy & Astrophysic

    Ubiquitous NH3\rm NH_3 supersonic component in L1688 coherent cores

    Full text link
    Context : Star formation takes place in cold dense cores in molecular clouds. Earlier observations have found that dense cores exhibit subsonic non-thermal velocity dispersions. In contrast, CO observations show that the ambient large-scale cloud is warmer and has supersonic velocity dispersions. Aims : We aim to study the ammonia (NH3\rm NH_3) molecular line profiles with exquisite sensitivity towards the coherent cores in L1688 in order to study their kinematical properties in unprecedented detail. Methods : We used NH3\rm NH_3 (1,1) and (2,2) data from the first data release (DR1) in the Green Bank Ammonia Survey (GAS). We first smoothed the data to a larger beam of 1' to obtain substantially more extended maps of velocity dispersion and kinetic temperature, compared to the DR1 maps. We then identified the coherent cores in the cloud and analysed the averaged line profiles towards the cores. Results : For the first time, we detected a faint (mean NH3\rm NH_3(1,1) peak brightness <<0.25 K in TMBT_{MB}), supersonic component towards all the coherent cores in L1688. We fitted two components, one broad and one narrow, and derived the kinetic temperature and velocity dispersion of each component. The broad components towards all cores have supersonic linewidths (MS1\mathcal{M}_S \ge 1). This component biases the estimate of the narrow dense core component's velocity dispersion by \approx28% and the kinetic temperature by \approx10%, on average, as compared to the results from single-component fits. Conclusions : Neglecting this ubiquitous presence of a broad component towards all coherent cores causes the typical single-component fit to overestimate the temperature and velocity dispersion. This affects the derived detailed physical structure and stability of the cores estimated from NH3\rm NH_3 observations.Comment: Accepted for publication in Astronomy & Astrophysics on 06/07/2020. 15 pages, 16 figures, 1 table. Language edits from previous versio
    corecore