175 research outputs found
First-principles approach to rotational-vibrational frequencies and infrared intensity for H adsorbed in nanoporous materials
The absorption sites and the low-lying rotational and vibrational (RV) energy
states for H adsorbed within a metal-organic framework are calculated via
van der Waals density functional theory. The induced dipole due to bond
stretching is found to be accurately given by a first-principles driven
approximation using maximally-localized-Wannier-function analysis. The
strengths and positions of lines in the complex spectra of RV transitions are
in reasonable agreement with experiment, and in particular explain the
experimentally mysteriously missing primary line for para hydrogen
Interaction of Small Molecules within Metal Organic Frameworks Studied by In Situ Vibrational Spectroscopy
Molecular-level characterization of interaction between small gases and metal organic frameworks (MOFs) is crucial to elucidate the adsorption mechanism and establish the relationship between the structure and chemical features of MOFs with observed adsorptive properties, which ultimately guide the new structure design and synthesis for enhanced functional performance. Among different techniques, vibrational spectroscopy (infrared and Raman), which provides fingerprint of chemical bonds by their vibrational spectra, is one of the most powerful tools to study adsorbate-adsorbent interaction and give rich detailed information for molecular behaviors inside MOFs pores. This chapter reviews a number of exemplary works utilizing vibrational spectroscopy to study the interaction of small molecules with metal organic frameworks
Analyzing the frequency shift of physiadsorbed CO2 in metal organic framework materials
Combining first-principles density functional theory simulations with IR and
Raman experiments, we determine the frequency shift of vibrational modes of CO2
when physiadsorbed in the iso-structural metal organic framework materials
Mg-MOF74 and Zn-MOF74. Surprisingly, we find that the resulting change in shift
is rather different for these two systems and we elucidate possible reasons. We
explicitly consider three factors responsible for the frequency shift through
physiabsorption, namely (i) the change in the molecule length, (ii) the
asymmetric distortion of the CO molecule, and (iii) the direct influence of
the metal center. The influence of each factor is evaluated separately through
different geometry considerations, providing a fundamental understanding of the
frequency shifts observed experimentally.Comment: 9 pages, 4 figure
Real-time, in situ monitoring of surface reactions during plasma passivation of GaAs
Real-time, in situ observations of surface chemistry during the remote plasma passivation of GaAs is reported herein. Using attenuated total reflection Fourier transform infrared spectroscopy, the relative concentrations of -As-O, -As-H, -H2O, and -CH2 bonds are measured as a function of exposure to the effluent from a microwave discharge through NH3, ND3, H2, and D2. The photoluminescence intensity (PL) from the GaAs substrate is monitored simultaneously and used qualitatively to estimate the extent of surface state reduction. It was found that, while the -CHx(x = 2,3) and -As-O concentrations are reduced rapidly, the rates at which the -As-H concentration and the PL intensity increase are relatively slow. The concentration of -H2O on the GaAs surface increases throughout the process as surface arsenic oxides and the silica reactor walls are reduced by atomic hydrogen. These observations suggest that removal of elemental As by reaction with H at the GaAs–oxide interface limits the passivation rate
Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro
Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon–oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case of the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K
- …