3,192 research outputs found
Fast Color Space Transformations Using Minimax Approximations
Color space transformations are frequently used in image processing,
graphics, and visualization applications. In many cases, these transformations
are complex nonlinear functions, which prohibits their use in time-critical
applications. In this paper, we present a new approach called Minimax
Approximations for Color-space Transformations (MACT).We demonstrate MACT on
three commonly used color space transformations. Extensive experiments on a
large and diverse image set and comparisons with well-known multidimensional
lookup table interpolation methods show that MACT achieves an excellent balance
among four criteria: ease of implementation, memory usage, accuracy, and
computational speed
On Euclidean Norm Approximations
Euclidean norm calculations arise frequently in scientific and engineering
applications. Several approximations for this norm with differing complexity
and accuracy have been proposed in the literature. Earlier approaches were
based on minimizing the maximum error. Recently, Seol and Cheun proposed an
approximation based on minimizing the average error. In this paper, we first
examine these approximations in detail, show that they fit into a single
mathematical formulation, and compare their average and maximum errors. We then
show that the maximum errors given by Seol and Cheun are significantly
optimistic.Comment: 9 pages, 1 figure, Pattern Recognitio
Approximate Lesion Localization in Dermoscopy Images
Background: Dermoscopy is one of the major imaging modalities used in the
diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty
and subjectivity of human interpretation, automated analysis of dermoscopy
images has become an important research area. Border detection is often the
first step in this analysis. Methods: In this article, we present an
approximate lesion localization method that serves as a preprocessing step for
detecting borders in dermoscopy images. In this method, first the black frame
around the image is removed using an iterative algorithm. The approximate
location of the lesion is then determined using an ensemble of thresholding
algorithms. Results: The method is tested on a set of 428 dermoscopy images.
The localization error is quantified by a metric that uses dermatologist
determined borders as the ground truth. Conclusion: The results demonstrate
that the method presented here achieves both fast and accurate localization of
lesions in dermoscopy images
Comments on "On Approximating Euclidean Metrics by Weighted t-Cost Distances in Arbitrary Dimension"
Mukherjee (Pattern Recognition Letters, vol. 32, pp. 824-831, 2011) recently
introduced a class of distance functions called weighted t-cost distances that
generalize m-neighbor, octagonal, and t-cost distances. He proved that weighted
t-cost distances form a family of metrics and derived an approximation for the
Euclidean norm in . In this note we compare this approximation to
two previously proposed Euclidean norm approximations and demonstrate that the
empirical average errors given by Mukherjee are significantly optimistic in
. We also propose a simple normalization scheme that improves the
accuracy of his approximation substantially with respect to both average and
maximum relative errors.Comment: 7 pages, 1 figure, 3 tables. arXiv admin note: substantial text
overlap with arXiv:1008.487
STRG-QL: Spatio-Temporal Region Graph Query Language for Video Databases
Copyright 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.In this paper, we present a new graph-based query language and its query processing for a Graph-based Video Database Management System (GVDBMS). Although extensive researches have proposed various query languages for video databases, most of them have the limitation in handling general-purpose video queries. Each method can handle specific data model, query type or application. In order to develop a general-purpose video query language, we first produce Spatio-Temporal Region Graph (STRG) for each video, which represents spatial and temporal information of video objects. An STRG data model is generated from the STRG by exploiting object-oriented model. Based on the STRG data model, we propose a new graph-based query language named STRG-QL, which supports various types of video query. To process the proposed STRG-QL, we introduce a rule-based query optimization that considers the characteristics of video data, i.e., the hierarchical correlations among video segments. The results of our extensive experimental study show that the proposed STRG-QL is promising in terms of accuracy and cost.http://dx.doi.org/10.1117/12.76553
- …