7 research outputs found

    Particulate 3D Hydrogels of Silk Fibroin-Pluronic to Deliver Curcumin for Infection-Free Wound Healing

    Get PDF
    Skin is the largest protective tissue of the body and is at risk of damage. Hence, the design and development of wound dressing materials is key for tissue repair and regeneration. Although silk fibroin is a known biopolymer in tissue engineering, its degradation rate is not correlated with wound closure rate. To address this disadvantage, we mimicked the hierarchical structure of skin and also provided antibacterial properties; a hydrogel with globular structure consisting of silk fibroin, pluronic F127, and curcumin was developed. In this regard, the effect of pluronic and curcumin on the structural and mechanical properties of the hydrogel was studied. The results showed that curcumin affected the particle size, crystallinity, and ultimate elongation of the hydrogels. In vitro assays confirmed that the hydrogel containing curcumin is not cytotoxic while the diffused curcumin and pluronic provided a considerable bactericidal property against Methicillin-resistant Staphylococcus aureus. Interestingly, presence of pluronic caused more than a 99% reduction in planktonic and adherent bacteria in the curcumin-free hydrogel groups. Moreover, curcumin improved this number further and inhibited bacteria adhesion to prevent biofilm formation. Overall, the developed hydrogel showed the potential to be used for skin tissue regeneration

    Antibacterial and anti-inflammatory properties of host defense peptides against Staphylococcus aureus

    Get PDF
    Cationic host defense peptides (HDPs) are a promising alternative to antibiotics in the fight against Staphylococcus aureus infections. In this study, we investigated the antibacterial and immunomodulatory properties of three HDPs namely IDR-1018, CATH-2, and LL-37. Although all three HDPs significantly inhibited LPS-induced activation of human macrophages, only CATH-2 prevented S. aureus growth. When applied to different infection models focused on intracellularly surviving bacteria, only IDR-1018 showed a consistent reduction in macrophage bacterial uptake. However, this observation did not correlate with an increase in killing the efficiency of intracellular S. aureus. Here, we conclude that despite the promising antibacterial and anti-inflammatory properties of the selected HDPs, macrophages' intrinsic antibacterial functions were not improved. Future studies should either focus on combining different HDPs or using them synergistically with other antibacterial agents to improve immune cells' efficacy against S. aureus pathogenesis

    Evaluation of silver bio-functionality in a multicellular in vitro model: towards reduced animal usage in implant-associated infection research

    Get PDF
    Background: Despite the extensive use of silver ions or nanoparticles in research related to preventing implant-associated infections (IAI), their use in clinical practice has been debated. This is because the strong antibacterial properties of silver are counterbalanced by adverse effects on host cells. One of the reasons for this may be the lack of comprehensive in vitro models that are capable of analyzing host-bacteria and host-host interactions. Methods and results: In this study, we tested silver efficacy through multicellular in vitro models involving macrophages (immune system), mesenchymal stem cells (MSCs, bone cells), and S. aureus (pathogen). Our model showed to be capable of identifying each element of culture as well as tracking the intracellular survival of bacteria. Furthermore, the model enabled to find a therapeutic window for silver ions (AgNO3) and silver nanoparticles (AgNPs) where the viability of host cells was not compromised, and the antibacterial properties of silver were maintained. While AgNO3 between 0.00017 and 0.017 µg/mL retained antibacterial properties, host cell viability was not affected. The multicellular model, however, demonstrated that those concentrations had no effect on the survival of S. aureus, inside or outside host cells. Similarly, treatment with 20 nm AgNPs did not influence the phagocytic and killing capacity of macrophages or prevent S. aureus from invading MSCs. Moreover, exposure to 100 nm AgNPs elicited an inflammatory response by host cells as detected by the increased production of TNF-α and IL-6. This was visible only when macrophages and MSCs were cultured together. Conclusions: Multicellular in vitro models such as the one used here that simulate complex in vivo scenarios can be used to screen other therapeutic compounds or antibacterial biomaterials without the need to use animals

    Saving Private Macrophage: Alternative therapeutic options for Staphylococcus aureus implant-associated infections

    No full text
    Breaking a bone is not a pleasant experience. It might get worse if an implant is needed to repair the fracture. In 1 to 5% of the cases, Staphylococcus aureus might use the implant to enter and colonize our organism. This pathogenic bacterium is extremely difficult to kill due to its resistance to common antibiotic treatments. We need to find new therapeutic strategies to prevent S. aureus from entering and surviving inside our bodies. Nature provided means to combat pathogenic bacteria even before antibiotic discovery: our immune system is an example. In the context of implant-associated infections, macrophages are a key immune cell type that coordinates the healing process while defending our organism from external threats. As this is already a lot of work, they need extra help to protect us from threats as dangerous as S. aureus. In this work, we aim to support macrophages in their fight against pathogens by increasing their antibacterial functions. We tried to stimulate macrophages with several compounds known for their antibacterial properties, such as silver ions and nanoparticles, host defense peptides, and S. aureus-specific antibodies. Unfortunately, none of these strategies alone succeeded in helping macrophages eliminate all bacteria. However, a combination of those, might hold the key to successful therapy. In conclusion, we focused on one cell type. However, implant-associated infections represent a complex scenario, with multiple players involved and all in need of help. Saving macrophages might help us win the fight, but not the war against S. aureus infections

    Antibacterial and anti-inflammatory properties of host defense peptides against Staphylococcus aureus

    No full text
    Cationic host defense peptides (HDPs) are a promising alternative to antibiotics in the fight against Staphylococcus aureus infections. In this study, we investigated the antibacterial and immunomodulatory properties of three HDPs namely IDR-1018, CATH-2, and LL-37. Although all three HDPs significantly inhibited LPS-induced activation of human macrophages, only CATH-2 prevented S. aureus growth. When applied to different infection models focused on intracellularly surviving bacteria, only IDR-1018 showed a consistent reduction in macrophage bacterial uptake. However, this observation did not correlate with an increase in killing the efficiency of intracellular S. aureus. Here, we conclude that despite the promising antibacterial and anti-inflammatory properties of the selected HDPs, macrophages' intrinsic antibacterial functions were not improved. Future studies should either focus on combining different HDPs or using them synergistically with other antibacterial agents to improve immune cells' efficacy against S. aureus pathogenesis

    Evaluation of silver bio-functionality in a multicellular in vitro model: towards reduced animal usage in implant-associated infection research

    No full text
    Background: Despite the extensive use of silver ions or nanoparticles in research related to preventing implant-associated infections (IAI), their use in clinical practice has been debated. This is because the strong antibacterial properties of silver are counterbalanced by adverse effects on host cells. One of the reasons for this may be the lack of comprehensive in vitro models that are capable of analyzing host-bacteria and host-host interactions.Methods and results: In this study, we tested silver efficacy through multicellular in vitro models involving macrophages (immune system), mesenchymal stem cells (MSCs, bone cells), and S. aureus (pathogen). Our model showed to be capable of identifying each element of culture as well as tracking the intracellular survival of bacteria. Furthermore, the model enabled to find a therapeutic window for silver ions (AgNO3) and silver nanoparticles (AgNPs) where the viability of host cells was not compromised, and the antibacterial properties of silver were maintained. While AgNO3 between 0.00017 and 0.017 µg/mL retained antibacterial properties, host cell viability was not affected. The multicellular model, however, demonstrated that those concentrations had no effect on the survival of S. aureus, inside or outside host cells. Similarly, treatment with 20 nm AgNPs did not influence the phagocytic and killing capacity of macrophages or prevent S. aureus from invading MSCs. Moreover, exposure to 100 nm AgNPs elicited an inflammatory response by host cells as detected by the increased production of TNF-α and IL-6. This was visible only when macrophages and MSCs were cultured together.Conclusions: Multicellular in vitro models such as the one used here that simulate complex in vivo scenarios can be used to screen other therapeutic compounds or antibacterial biomaterials without the need to use animals

    Antibacterial and anti-inflammatory properties of host defense peptides against Staphylococcus aureus

    Get PDF
    Cationic host defense peptides (HDPs) are a promising alternative to antibiotics in the fight against Staphylococcus aureus infections. In this study, we investigated the antibacterial and immunomodulatory properties of three HDPs namely IDR-1018, CATH-2, and LL-37. Although all three HDPs significantly inhibited LPS-induced activation of human macrophages, only CATH-2 prevented S. aureus growth. When applied to different infection models focused on intracellularly surviving bacteria, only IDR-1018 showed a consistent reduction in macrophage bacterial uptake. However, this observation did not correlate with an increase in killing the efficiency of intracellular S. aureus. Here, we conclude that despite the promising antibacterial and anti-inflammatory properties of the selected HDPs, macrophages’ intrinsic antibacterial functions were not improved. Future studies should either focus on combining different HDPs or using them synergistically with other antibacterial agents to improve immune cells’ efficacy against S. aureus pathogenesis.Biomaterials & Tissue Biomechanic
    corecore