5 research outputs found

    Design, Semisynthesis, and Estrogenic Activity of Lignan Derivatives from Natural Dibenzylbutyrolactones

    Full text link
    Based on molecular docking studies on the ERα, a series of lignan derivatives (3–16) were designed and semisynthesized from the natural dibenzylbutyrolactones bursehernin (1) and matairesinol dimethyl ether (2). To examine their estrogenic and antiestrogenic potencies, the effects of these compounds on estrogen receptor element (ERE)-driven reporter gene expression and viability in human ER+ breast cancer cells were evaluated. Lignan compounds induced ERE-driven reporter gene expression with very low potency as compared with the pure agonist E2. However, coincubation of 5 μM of lignan derivatives 1, 3, 4, 7, 8, 9, 11, 13, and 14 with increasing concentrations of E2 (from 0.01 pM to 1 nM) reduced both the potency and efficacy of pure agonists. The binding to the rhERα-LBD was validated by TR-FRET competitive binding assay and lignans bound to the rhERα with IC50 values from 0.16 μM (compound 14) to 6 μM (compound 4). Induced fit docking (IFD) and molecular dynamics (MD) simulations for compound 14 were carried out to further investigate the binding mode interactions. Finally, the in silico ADME predictions indicated that the most potent lignan derivatives exhibited good drug-likeness

    Planeación jurídica para prevención de riesgos en empresas tecnológicas

    Full text link
    Este proyecto tuvo como objetivo ayudar a las empresas de tecnología pertenecientes al Centro para la Gestión de la Innovación y la Tecnología (CEGINT) del ITESO, a obtener certeza jurídica en el desempeño de sus labores y brindarles asesorías legales

    Planeación jurídica para prevención de riesgos en empresas tecnológicas

    Full text link
    Proyecto de Aplicación Profesional que tuvo como objetivo brindar asesorías legales y soporte a las empresas de tecnología pertenecientes al Centro para la Gestión de la Innovación y la Tecnología (CEGINT) del ITESO, y ayudarlas a obtener certeza jurídica en el desempeño de sus labores

    Discovery of Highly Functionalized 5-hydroxy-2H-pyrrol-2-ones That Exhibit Antiestrogenic Effects in Breast and Endometrial Cancer Cells and Potentiate the Antitumoral Effect of Tamoxifen

    Full text link
    Tamoxifen improves the overall survival rate in hormone receptor-positive breast cancer patients. However, despite the fact that it exerts antagonistic effects on the ERα, it can act as a partial agonist, resulting in tumor growth in estrogen-sensitive tissues. In this study, highly functionalized 5-hydroxy-2H-pyrrol-2-ones were synthesized and evaluated by using ERα- and phenotype-based screening assays. Compounds 32 and 35 inhibited 17β-estradiol (E2)-stimulated ERα-mediated transcription of the luciferase reporter gene in breast cancer cells without inhibition of the transcriptional activity mediated by androgen or glucocorticoid receptors. Compound 32 regulated E2-stimulated ERα-mediated transcription by partial antagonism, whereas compound 35 caused rapid and non-competitive inhibition. Monitoring of 2D and 3D cell growth confirmed potent antitumoral effects of both compounds on ER-positive breast cancer cells. Furthermore, compounds 32 and 35 caused apoptosis and blocked the cell cycle of ER-positive breast cancer cells in the sub-G1 and G0/G1 phases. Interestingly, compound 35 suppressed the functional activity of ERα in the uterus, as demonstrated by the inhibition of E2-stimulated transcription of estrogen and progesterone receptors and alkaline phosphatase enzymatic activity. Compound 35 showed a relatively low binding affinity with ERα. However, its antiestrogenic effect was associated with an increased polyubiquitination and a reduced protein expression of ERα. Clinically relevant, a possible combinatory therapy with compound 35 may enhance the antitumoral efficacy of 4-hydroxy-tamoxifen in ER-positive breast cancer cells. In silico ADME predictions indicated that these compounds exhibit good drug-likeness, which, together with their potential antitumoral effects and their lack of estrogenic activity, offers a pharmacological opportunity to deepen the study of ER-positive breast cancer treatment
    corecore