118 research outputs found

    Exploring the Release of Toxic Oligomers from α-Synuclein Fibrils with Antibodies and STED Microscopy.

    Get PDF
    α-Synuclein (αS) is an intrinsically disordered and highly dynamic protein involved in dopamine release at presynaptic terminals. The abnormal aggregation of αS as mature fibrils into intraneuronal inclusion bodies is directly linked to Parkinson's disease. Increasing experimental evidence suggests that soluble oligomers formed early during the aggregation process are the most cytotoxic forms of αS. This study investigated the uptake by neuronal cells of pathologically relevant αS oligomers and fibrils exploiting a range of conformation-sensitive antibodies, and the super-resolution stimulated emission depletion (STED) microscopy. We found that prefibrillar oligomers promptly penetrate neuronal membranes, thus resulting in cell dysfunction. By contrast, fibril docking to the phospholipid bilayer is accompanied by αS conformational changes with a progressive release of A11-reactive oligomers, which can enter into the neurons and trigger cell impairment. Our data provide important evidence on the role of αS fibrils as a source of harmful oligomers, which resemble the intermediate conformers formed de novo during aggregation, underling the dynamic and reversible nature of protein aggregates responsible for α-synucleinopathies

    Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases

    Get PDF
    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ(42) peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca(2+) across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane

    Interaction of toxic and non-toxic HypF-N oligomers with lipid bilayers investigated at high resolution with atomic force microscopy

    Get PDF
    Protein misfolded oligomers are considered the most toxic species amongst those formed in the process of amyloid formation and the molecular basis of their toxicity, although not completely understood, is thought to originate from the interaction with the cellular membrane. Here, we sought to highlight the molecular determinants of oligomer-membrane interaction by atomic force microscopy. We monitored the interaction between multiphase supported lipid bilayers and two types of HypF-N oligomers displaying different structural features and cytotoxicities. By our approach we imaged with unprecedented resolution the ordered and disordered lipid phases of the bilayer and different oligomer structures interacting with either phase. We identified the oligomers and lipids responsible for toxicity and, more generally, we established the importance of the membrane lipid component in mediating oligomer toxicity. Our findings support the importance of GM1 ganglioside in mediating the oligomer-bilayer interaction and support a mechanism of oligomer cytotoxicity involving bilayer destabilization by globular oligomers within GM1-rich ordered raft regions rather than by annular oligomers in the surrounding disordered membrane domains

    Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: A mechanistic insight

    Get PDF
    The healthy effects of plant polyphenols, some of which characterize the so-called Mediterranean diet, have been shown to arise from epigenetic and biological modifications resulting, among others, in autophagy stimulation. Our previous work highlighted the beneficial effects of oleuropein aglycone (OLE), the main polyphenol found in the extra virgin olive oil, against neurodegeneration both in cultured cells and in model organisms, focusing, in particular, autophagy activation. In this study we investigated more in depth the molecular and cellular mechanisms of autophagy induction by OLE using cultured neuroblastoma cells and an OLE-fed mouse model of amylod beta (Aβ) deposition. We found that OLE triggers autophagy in cultured cells through the Ca(2+)-CAMKKβ–AMPK axis. In particular, in these cells OLE induces a rapid release of Ca(2+) from the SR stores which, in turn, activates CAMKKβ, with subsequent phosphorylation and activation of AMPK. The link between AMPK activation and mTOR inhibition was shown in the OLE-fed animal model in which we found that decreased phospho-mTOR immunoreactivity and phosphorylated mTOR substrate p70 S6K levels match enhanced phospho-AMPK levels, supporting the idea that autophagy activation by OLE proceeds through mTOR inhibition. Our results agree with those reported for other plant polyphenols, suggesting a shared molecular mechanism underlying the healthy effects of these substances against ageing, neurodegeneration, cancer, diabetes and other diseases implying autophagy dysfunction
    • …
    corecore