156 research outputs found

    Process-Algebraic Modelling of Priority Queueing Networks

    Get PDF
    We consider a closed multiclass queueing network model in which each class receives a different priority level and jobs with lower priority are served only if there are no higher-priority jobs in the queue. Such systems do not enjoy a product form solution, thus their analysis is typically carried out through approximate mean value analysis (AMVA) techniques. We formalise the problem in PEPA in a way amenable to differential analysis. Experimental results show that our approach is competitive with simulation and AMVA methods

    SampleHST: Efficient On-the-Fly Selection of Distributed Traces

    Get PDF
    Since only a small number of traces generated from distributed tracing helps in troubleshooting, its storage requirement can be significantly reduced by biasing the selection towards anomalous traces. To aid in this scenario, we propose SampleHST, a novel approach to sample on-the-fly from a stream of traces in an unsupervised manner. SampleHST adjusts the storage quota of normal and anomalous traces depending on the size of its budget. Initially, it utilizes a forest of Half Space Trees (HSTs) for trace scoring. This is based on the distribution of the mass scores across the trees, which characterizes the probability of observing different traces. The mass distribution from HSTs is subsequently used to cluster the traces online leveraging a variant of the mean-shift algorithm. This trace-cluster association eventually drives the sampling decision. We have compared the performance of SampleHST with a recently suggested method using data from a cloud data center and demonstrated that SampleHST improves sampling performance up to by 9.5×

    SampleHST: Efficient On-the-Fly Selection of Distributed Traces

    Full text link
    Since only a small number of traces generated from distributed tracing helps in troubleshooting, its storage requirement can be significantly reduced by biasing the selection towards anomalous traces. To aid in this scenario, we propose SampleHST, a novel approach to sample on-the-fly from a stream of traces in an unsupervised manner. SampleHST adjusts the storage quota of normal and anomalous traces depending on the size of its budget. Initially, it utilizes a forest of Half Space Trees (HSTs) for trace scoring. This is based on the distribution of the mass scores across the trees, which characterizes the probability of observing different traces. The mass distribution from HSTs is subsequently used to cluster the traces online leveraging a variant of the mean-shift algorithm. This trace-cluster association eventually drives the sampling decision. We have compared the performance of SampleHST with a recently suggested method using data from a cloud data center and demonstrated that SampleHST improves sampling performance up to by 9.5x.Comment: 10 pages, 5 figure
    • …
    corecore