7 research outputs found
Recent applications and potential of near-term (interannual to decadal) climate predictions
Following efforts from leading centres for climate forecasting, sustained routine operational near-term climate predictions (NTCP) are now produced that bridge the gap between seasonal forecasts and climate change projections offering the prospect of seamless climate services. Though NTCP is a new area of climate science and active research is taking place to increase understanding of the processes and mechanisms required to produce skillful predictions, this significant technical achievement combines advances in initialisation with ensemble prediction of future climate up to a decade ahead. With a growing NTCP database, the predictability of the evolving externally-forced and internally-generated components of the climate system can now be quantified. Decision-makers in key sectors of the economy can now begin to assess the utility of these products for informing climate risk and for planning adaptation and resilience strategies up to a decade into the future. Here, case studies are presented from finance and economics, water management, agriculture and fisheries management demonstrating the emerging utility and potential of operational NTCP to inform strategic planning across a broad range of applications in key sectors of the global economy
Recommended from our members
Recent applications and potential of near-term (interannual to decadal) climate predictions
Following efforts from leading centres for climate forecasting, sustained routine operational near-term climate predictions (NTCP) are now produced that bridge the gap between seasonal forecasts and climate change projections offering the prospect of seamless climate services. Though NTCP is a new area of climate science and active research is taking place to increase understanding of the processes and mechanisms required to produce skillful predictions, this significant technical achievement combines advances in initialisation with ensemble prediction of future climate up to a decade ahead. With a growing NTCP database, the predictability of the evolving externally-forced and internally-generated components of the climate system can now be quantified. Decision-makers in key sectors of the economy can now begin to assess the utility of these products for informing climate risk and for planning adaptation and resilience strategies up to a decade into the future. Here, case studies are presented from finance and economics, water management, agriculture and fisheries management demonstrating the emerging utility and potential of operational NTCP to inform strategic planning across a broad range of applications in key sectors of the global economy
Oceanographic and topographic interactions in underwater acoustic propagation, with regional applications.
http://archive.org/details/oceanographictop00carmNAN
Position paper on high performance computing needs in earth system prediction
The article of record as published may be found at http://dx.doi.org/10.7289/V5862DH3The United States experiences some of the most severe weather on Earth. Extreme weather or climate
events - such as hurricanes, tornadoes, flooding, drought, and heat waves - can devastate communities
and businesses, cause loss of life and property, and impact valuable infrastructure and natural resources. The number and severity of extreme weather and climate events in the U.S. has risen
since 1980, and is projected to continue rising this century. Growing populations in vulnerable areas create increased risks. If current trends continue, damages from extreme weather and climate events could grow four-fold by 2050.
Predictions and projections of weather and extreme events across time scales from weather to
climate rely on sophisticated numerical models running on High Performance Computing (HPC) systems,
which press the frontier of the Nation’s HPC capability. The Nation’s Earth system modeling community has a unique set of HPC requirements which differ from industry needs. Typically, HPC advances are measured using computational peak performance metrics that are ill-suited to Earth system modeling applications. We advocate for a shift in processor design to increase emphasis on memory bandwidth, so Earth system models run more efficiently and better serve the public need
The national earth system prediction capability: coordinating the giant
The article of record as published may be found at http://dx.doi.org/10.1175/BAMS-D-16-0002.1A five-agency strategy to coordinate and accelerate the national numerical environmental prediction capability is discussed
Recommended from our members
Expression-Based Cell Lineage Analysis in Drosophila Through a Course-Based Research Experience for Early Undergraduates.
A variety of genetic techniques have been devised to determine cell lineage relationships during tissue development. Some of these systems monitor cell lineages spatially and/or temporally without regard to gene expression by the cells, whereas others correlate gene expression with the lineage under study. The GAL4 Technique for Real-time and Clonal Expression (G-TRACE) system allows for rapid, fluorescent protein-based visualization of both current and past GAL4 expression patterns and is therefore amenable to genome-wide expression-based lineage screens. Here we describe the results from such a screen, performed by undergraduate students of the University of California, Los Angeles (UCLA) Undergraduate Research Consortium for Functional Genomics (URCFG) and high school summer scholars as part of a discovery-based education program. The results of the screen, which reveal novel expression-based lineage patterns within the brain, the imaginal disc epithelia, and the hematopoietic lymph gland, have been compiled into the G-TRACE Expression Database (GED), an online resource for use by the Drosophila research community. The impact of this discovery-based research experience on student learning gains was assessed independently and shown to be greater than that of similar programs conducted elsewhere. Furthermore, students participating in the URCFG showed considerably higher STEM retention rates than UCLA STEM students that did not participate in the URCFG, as well as STEM students nationwide