487 research outputs found

    Constraining Omega using weak gravitational lensing by clusters

    Full text link
    The morphology of galaxy clusters reflects the epoch at which they formed and hence depends on the value of the mean cosmological density, Omega. Recent studies have shown that the distribution of dark matter in clusters can be mapped from analysis of the small distortions in the shapes of background galaxies induced by weak gravitational lensing in the cluster potential. We construct new statistics to quantify the morphology of clusters which are insensitive to limitations in the mass reconstruction procedure. By simulating weak gravitational lensing in artificial clusters grown in numerical simulations of the formation of clusters in three different cosmologies, we obtain distributions of a quadrupole statistic which measures global deviations from spherical symmetry in a cluster. These distributions are very sensitive to the value of Omega_0 and, as a result, lensing observations of a small number of clusters should be sufficient to place broad constraints on Omega_{0} and certainly to distinguish between the extreme values of 0.2 and 1.Comment: Submitted to MNRAS. Compressed postscript also available at ftp://star-ftp.dur.ac.uk/pub/preprints/wcf2.ps.g

    Extending the halo mass resolution of NN-body simulations

    Full text link
    We present a scheme to extend the halo mass resolution of N-body simulations of the hierarchical clustering of dark matter. The method uses the density field of the simulation to predict the number of sub-resolution dark matter haloes expected in different regions. The technique requires as input the abundance of haloes of a given mass and their average clustering, as expressed through the linear and higher order bias factors. These quantities can be computed analytically or, more accurately, derived from a higher resolution simulation as done here. Our method can recover the abundance and clustering in real- and redshift-space of haloes with mass below ∼7.5×1013h−1M⊙\sim 7.5 \times 10^{13}h^{-1}M_{\odot} at z=0z=0 to better than 10%. We demonstrate the technique by applying it to an ensemble of 50 low resolution, large-volume NN-body simulations to compute the correlation function and covariance matrix of luminous red galaxies (LRGs). The limited resolution of the original simulations results in them resolving just two thirds of the LRG population. We extend the resolution of the simulations by a factor of 30 in halo mass in order to recover all LRGs. With existing simulations it is possible to generate a halo catalogue equivalent to that which would be obtained from a NN-body simulation using more than 20 trillion particles; a direct simulation of this size is likely to remain unachievable for many years. Using our method it is now feasible to build the large numbers of high-resolution large volume mock galaxy catalogues required to compute the covariance matrices necessary to analyse upcoming galaxy surveys designed to probe dark energy.Comment: 11 pages, 7 Figure
    • …
    corecore