2,438 research outputs found

    A Trapped Field of 17.6 T in Melt-Processed, Bulk Gd-Ba-Cu-O Reinforced with Shrink-Fit Steel

    Full text link
    The ability of large grain, REBa2_{2}Cu3_{3}O7−δ_{7-\delta} [(RE)BCO; RE = rare earth] bulk superconductors to trap magnetic field is determined by their critical current. With high trapped fields, however, bulk samples are subject to a relatively large Lorentz force, and their performance is limited primarily by their tensile strength. Consequently, sample reinforcement is the key to performance improvement in these technologically important materials. In this work, we report a trapped field of 17.6 T, the largest reported to date, in a stack of two, silver-doped GdBCO superconducting bulk samples, each of diameter 25 mm, fabricated by top-seeded melt growth (TSMG) and reinforced with shrink-fit stainless steel. This sample preparation technique has the advantage of being relatively straightforward and inexpensive to implement and offers the prospect of easy access to portable, high magnetic fields without any requirement for a sustaining current source.Comment: Updated submission to reflect licence change to CC-BY. This is the "author accepted manuscript" and is identical in content to the published versio

    Trapped Fields >1 T in a Bulk Superconducting Ring by Pulsed Field Magnetization

    Get PDF
    One potential application of magnetized RE-Ba-Cu-O (where RE = rare earth or Y) bulk superconductors is as a high-field alternative to conventional permanent magnets in desktop NMR and MRI systems. Pulsed field magnetization (PFM) is one of the most promising practical methods of magnetizing such bulks. However, the trapped fields obtained by PFM are much lower than those obtained using quasi-static methods like field-cooling magnetization (FCM) due to heating during PFM. Furthermore, bulk superconducting rings have proved more difficult to magnetize via PFM than discs. The reported trapped fields in single bulk superconducting rings magnetized by PFM are less than 0.35 T at the centre of the bore due to thermomagnetic instabilities. In this work, systematic PFM measurements on a bulk Gd-Ba-Cu-O ring were carried out and a trapped field of 1.3 T at 55 K was achieved using a multi-pulse, stepwise cooling (MPSC) method. In the MPSC method, a sequence of pulsed fields is used to magnetize the ring bulk. The pulsed field is increased in small increments and the sample temperature is decreased sequentially. Consequently, as some field is already trapped after the first pulse, the motion of the flux for subsequent pulses will be reduced, leading to less heat generated in the bulk sample. This greatly improves the thermomagnetic stability of the PFM process, enabling larger trapped fields.</p

    Retinal microvascular network attenuation in Alzheimer's disease

    Get PDF
    AbstractIntroductionCerebral small-vessel disease has been implicated in the development of Alzheimer's disease (AD). The retinal microvasculature enables the noninvasive visualization and evaluation of the systemic microcirculation. We evaluated retinal microvascular parameters in a case-control study of AD patients and cognitively normal controls.MethodsRetinal images were computationally analyzed and quantitative retinal parameters (caliber, fractal dimension, tortuosity, and bifurcation) measured. Regression models were used to compute odds ratios (OR) and confidence intervals (CI) for AD with adjustment for confounders.ResultsRetinal images were available in 213 AD participants and 294 cognitively normal controls. Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77 [CI: 0.62–0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63–0.97]) were more likely to have AD after appropriate adjustment.DiscussionPatients with AD have a sparser retinal microvascular network and retinal microvascular variation may represent similar pathophysiological events within the cerebral microvasculature of patients with AD
    • …
    corecore