54 research outputs found

    Propolis efficacy: the quest for eco-friendly solvents

    Get PDF
    Propolis, a natural product made by bees with resins and balsams, is known for its complex chemical composition and remarkable bioactivities. In this study, propolis extraction was studied seeking extracts with strong bioactivities using less orthodox solvents, with some derived from apiary products. For that, a propolis sample collected from Gerês apiary in 2018 (G18) was extracted by maceration with six different solvents: absolute ethanol, ethanol/water (7:3), honey brandy, mead, propylene glycol and water. The solvent influence on the chemical composition and antioxidant and antimicrobial activities of the extracts was investigated. Antioxidant potential was assessed by the DPPH free-radical-scavenging assay and the antimicrobial activity by the agar dilution method. Chemical composition of the extracts was determined in vitro by three colorimetric assays: total ortho-diphenols, phenolics and flavonoids contents and the LC-MS technique. To our knowledge, this is the first time that solvents such as honey brandy and mead have been studied. Honey brandy showed considerable potential to extract propolis active compounds able to inhibit the growth of bacteria such as the methicillin-sensitive Staphylococcus aureus and Propionibacterium acnes (MIC values of 100 and 200 µg/mL, respectively) and the fungi Candida albicans and Saccharomyces cerevisiae (MIC=500 µg/mL, for both). Mead extracts displayed high antioxidant capacity (EC50=1.63 ± 0.27 µg/mL) and great activity against resistant bacteria such as the methicillin-resistant Staphylococcus aureus and Escherichia coli (MIC=750 µg/mL, for both). The production of such solvents made from beehive products further promotes a diversification of apiary products and the exploration of new applications using eco-friendly solutions.Ana Freitas acknowledges the financial support provided by national funds through FCT—Portuguese Foundation for Science and Technology (PD/BD/128276/2017), under the Doctoral Programme “Agricultural Production Chains—from fork to farm” (PD/00122/2012), and from the European Social Funds and the Regional Operational Programme Norte 2020. This study was also supported by CITAB research unit (UIDB/04033/2020), CBMA research unit (Contrato-Programa UIDB/04050/2020), Centre of Chemistry (UID/QUI/0686/2016), BioTecNorte (operation NORTE-01-0145-FEDER-000004), supported by the Northern Portugal Regional Operational Programme (NORTE 2020), LAQV (projects UIDB/50006/2020, UIDP/50006/2020, and UID/BIA/04004/2020) funded by national funds through the FCT I.P.info:eu-repo/semantics/publishedVersio

    Integration of GMR sensors with different technologies

    Get PDF
    Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.Peer ReviewedPostprint (published version

    Magnetic states of granular layered CoFe-Al\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    The granular layered magnetic system Co80Fe20(t)/Al2 O3 (3 nm), where the Co80Fe20 layers of nominal thickness t form separate, almost spherical magnetic granules of typical diameter 2-3 nm between the Al2O3 spacers, was studied. We discuss measurements of the dc and ac magnetic susceptibility χ for 1 n

    A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Get PDF
    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A

    Valorização comercial de uma amostra de própolis do Gerês (Portugal)

    Get PDF
    O própolis e um material resinoso produzido por abelhas a partir de exsudados de plantas. Tem vindo a ser considerado um produto de excelência visto exibir inúmeras propriedades biológicas[1] . Atualmente, a dimensão do mercado global do própolis e avaliado em cerca de 2300 toneladas e estima-se atingir as 2900 toneladas em 2021, revelando-se um mercado promissor para utilizações nas indústrias farmacêutica, cosmética, alimentar e na apiterapia [2]. Porem, própolis de diferentes regiões geográficas podem apresentar diferentes composições químicas e, portanto, um perfil de propriedades biológicas distinto e/ou atividades específicas com eficiências muito distintas

    Valorização e potenciais aplicações de uma amostra de própolis português da Beira Alta

    Get PDF
    O própolis é um produto elaborado pelas abelhas a partir de exsudados de plantas, usado na proteção da colmeia[1]. Tem sido muito estudado e valorizado mundialmente pelas suas propriedades biológicas, como a antioxidante e antimicrobiana, atribuídas principalmente a uma composição química rica em compostos fenólicos. A existência de vários tipos de própolis – determinados por diferentes tipos de flora e clima - salienta a necessidade da sua caracterização química e biológica[1]. A padronização do própolis é também requerida pela sua potencial utilização nas indústrias farmacêutica, cosmética ou alimentar[2] . Neste trabalho estudou-se uma amostra de própolis português para verificar o potencial benefício da sua incorporação em produtos cosméticos. Partiu-se de uma amostra recolhida num apiário da Beira Alta (Pereiro), em 2015, e procedeu-se à sua extração e reconstituição em diferentes solventes (etanol 100 % e 70 % e propilenoglicol). Os extratos (P15.EE100, P15.EE70 e P15.PGE) foram analisados quanto ao seu conteúdo de compostos fenólicos e flavonóides totais por métodos espetrofotométricos. Adicionalmente, os constituintes fenólicos individuais de P15.EE100 foram elucidados por análise de cromatografia liquida por fase reversa, associada a detetor de arrastamento de díodos e a espetrómetro de massa com ionização por eletrospray (UHPLC-DAD-ESI-MSn). Na avaliação do potencial antioxidante recorreu-se à medição da atividade scavenging dos radicais 2,2-difenil-1-picrilhidrazilo e do anião superóxido. A atividade antimicrobiana foi avaliada pelo método de diluição em agar. P15.EE100 revelou maior teor de polifenóis e flavonóides totais e também melhor capacidade antioxidante. P15.EE100 exibiu melhor atividade antibacteriana, particularmente contra bactérias Gram-positivas; P15.EE100 e P15.EE70 revelaram idêntica atividade antifúngica, com um MIC de 500 μg.mL-1 . Paralelamente à análise laboratorial estudou-se a indústria e o mercado da cosmética (em particular o segmento natural e orgânico) e o mercado do própolis. Os dados revelam que, nos últimos 20 anos, a indústria cosmética apresentou uma taxa de crescimento de aproximadamente 4,5 % por ano. O mercado global do segmento natural e orgânico tem aumentado significativamente, prevendo-se um crescimento anual de 10 %[3] . Relativamente ao mercado do própolis, prevê-se uma taxa de crescimento de 2,2 % até 2021[4]. Conjugando a análise da indústria cosmética com os resultados laboratoriais obtidos, em particular as propriedades antimicrobianas e antioxidantes reveladas pelo própolis estudado, perspetiva-se a possibilidade da sua aplicação em cosméticos

    Portuguese propolis: a source of valuable bioactivities

    Get PDF
    To FEDER/COMPETE/POCI– Operational Competitiveness and Internationalization Programme, under Project POCI-01-0145-FEDER-006958 and FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal. Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team, IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation (https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing guidance on the implementation of the phylodynamic models; Joshua L. Cherry (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health) for providing guidance with the subsampling strategies; and all authors, originating and submitting laboratories who have contributed genome data on GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions expressed in this article are those of the authors and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. This study is co-funded by Fundação para a Ciência e Tecnologia and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio
    corecore